# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A script to export the BERT core model as a TF-Hub SavedModel.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function from absl import app from absl import flags import tensorflow as tf from typing import Optional, Text from official.nlp import bert_modeling from official.nlp.bert import bert_models FLAGS = flags.FLAGS flags.DEFINE_string("bert_config_file", None, "Bert configuration file to define core bert layers.") flags.DEFINE_string("model_checkpoint_path", None, "File path to TF model checkpoint.") flags.DEFINE_string("export_path", None, "TF-Hub SavedModel destination path.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string("sp_model_file", None, "The sentence piece model file that the ALBERT model was " "trained on.") flags.DEFINE_enum( "model_type", "bert", ["bert", "albert"], "Specifies the type of the model. " "If 'bert', will use canonical BERT; if 'albert', will use ALBERT model.") def create_bert_model(bert_config: bert_modeling.BertConfig): """Creates a BERT keras core model from BERT configuration. Args: bert_config: A BertConfig` to create the core model. Returns: A keras model. """ # Adds input layers just as placeholders. input_word_ids = tf.keras.layers.Input( shape=(None,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input( shape=(None,), dtype=tf.int32, name="input_mask") input_type_ids = tf.keras.layers.Input( shape=(None,), dtype=tf.int32, name="input_type_ids") transformer_encoder = bert_models.get_transformer_encoder( bert_config, sequence_length=None, float_dtype=tf.float32) sequence_output, pooled_output = transformer_encoder( [input_word_ids, input_mask, input_type_ids]) # To keep consistent with legacy hub modules, the outputs are # "pooled_output" and "sequence_output". return tf.keras.Model( inputs=[input_word_ids, input_mask, input_type_ids], outputs=[pooled_output, sequence_output]), transformer_encoder def export_bert_tfhub(bert_config: bert_modeling.BertConfig, model_checkpoint_path: Text, hub_destination: Text, vocab_file: Optional[Text] = None, sp_model_file: Optional[Text] = None): """Restores a tf.keras.Model and saves for TF-Hub.""" core_model, encoder = create_bert_model(bert_config) checkpoint = tf.train.Checkpoint(model=encoder) checkpoint.restore(model_checkpoint_path).assert_consumed() if isinstance(bert_config, bert_modeling.AlbertConfig): if not sp_model_file: raise ValueError("sp_model_file is required.") core_model.sp_model_file = tf.saved_model.Asset(sp_model_file) else: assert isinstance(bert_config, bert_modeling.BertConfig) if not vocab_file: raise ValueError("vocab_file is required.") core_model.vocab_file = tf.saved_model.Asset(vocab_file) core_model.do_lower_case = tf.Variable( "uncased" in vocab_file, trainable=False) core_model.save(hub_destination, include_optimizer=False, save_format="tf") def main(_): assert tf.version.VERSION.startswith('2.') config_cls = { "bert": bert_modeling.BertConfig, "albert": bert_modeling.AlbertConfig, } bert_config = config_cls[FLAGS.model_type].from_json_file( FLAGS.bert_config_file) export_bert_tfhub(bert_config, FLAGS.model_checkpoint_path, FLAGS.export_path, FLAGS.vocab_file, FLAGS.sp_model_file) if __name__ == "__main__": app.run(main)