# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Longformer model configurations and instantiation methods.""" import dataclasses import tensorflow as tf from official.modeling import tf_utils from official.modeling.hyperparams import base_config from official.nlp.configs import encoders from official.projects.lra.transformer_encoder import TransformerEncoder @dataclasses.dataclass class TransformerEncoderConfig(encoders.BertEncoderConfig): """Extra paramerters for Transformer configs. Attributes: For in-place usage only """ @base_config.bind(TransformerEncoderConfig) def get_encoder(encoder_cfg: TransformerEncoderConfig): """Gets a 'TransformerEncoder' object. Args: encoder_cfg: A 'TransformerEncoderConfig'. Returns: A encoder object. """ encoder = TransformerEncoder( vocab_size=encoder_cfg.vocab_size, hidden_size=encoder_cfg.hidden_size, num_layers=encoder_cfg.num_layers, num_attention_heads=encoder_cfg.num_attention_heads, inner_dim=encoder_cfg.intermediate_size, inner_activation=tf_utils.get_activation(encoder_cfg.hidden_activation), output_dropout=encoder_cfg.dropout_rate, attention_dropout=encoder_cfg.attention_dropout_rate, max_sequence_length=encoder_cfg.max_position_embeddings, type_vocab_size=encoder_cfg.type_vocab_size, initializer=tf.keras.initializers.TruncatedNormal( stddev=encoder_cfg.initializer_range ), output_range=encoder_cfg.output_range, embedding_width=encoder_cfg.embedding_size, norm_first=encoder_cfg.norm_first, ) return encoder