# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FFFNER experiment configurations.""" # pylint: disable=g-doc-return-or-yield,line-too-long from official.core import config_definitions as cfg from official.core import exp_factory from official.modeling import optimization from official.nlp.configs import encoders from official.projects.fffner import fffner from official.projects.fffner import fffner_dataloader from official.projects.fffner import fffner_prediction AdamWeightDecay = optimization.AdamWeightDecayConfig PolynomialLr = optimization.PolynomialLrConfig PolynomialWarmupConfig = optimization.PolynomialWarmupConfig @exp_factory.register_config_factory('fffner/ner') def fffner_ner() -> cfg.ExperimentConfig: """Defines fffner experiments.""" config = cfg.ExperimentConfig( task=fffner_prediction.FFFNerPredictionConfig( model=fffner_prediction.FFFNerModelConfig( encoder=encoders.EncoderConfig( type='any', any=fffner.FFFNerEncoderConfig())), train_data=fffner_dataloader.FFFNerDataConfig(), validation_data=fffner_dataloader.FFFNerDataConfig( is_training=False, drop_remainder=False, include_example_id=True)), trainer=cfg.TrainerConfig( optimizer_config=optimization.OptimizationConfig({ 'optimizer': { 'type': 'adamw', 'adamw': { 'weight_decay_rate': 0.01, 'exclude_from_weight_decay': ['LayerNorm', 'layer_norm', 'bias'], } }, 'learning_rate': { 'type': 'polynomial', 'polynomial': { 'initial_learning_rate': 2e-5, 'end_learning_rate': 0.0, } }, 'warmup': { 'type': 'polynomial' } })), restrictions=[ 'task.train_data.is_training != None', 'task.validation_data.is_training != None' ]) return config