# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loads dataset for the FFFNER task.""" import dataclasses from typing import Mapping, Optional, Tuple import tensorflow as tf from official.common import dataset_fn from official.core import config_definitions as cfg from official.core import input_reader from official.nlp.data import data_loader from official.nlp.data import data_loader_factory LABEL_TYPES_MAP = {'int': tf.int64, 'float': tf.float32} @dataclasses.dataclass class FFFNerDataConfig(cfg.DataConfig): """Data config for sentence prediction task (tasks/sentence_prediction).""" input_path: str = '' global_batch_size: int = 32 is_training: bool = True seq_length: int = 128 label_type: str = 'int' # Whether to include the example id number. include_example_id: bool = False label_field_is_entity: str = 'is_entity_label' label_field_entity_type: str = 'entity_type_label' # Maps the key in TfExample to feature name. # E.g 'label_ids' to 'next_sentence_labels' label_name: Optional[Tuple[str, str]] = None # Either tfrecord, sstable, or recordio. file_type: str = 'tfrecord' @data_loader_factory.register_data_loader_cls(FFFNerDataConfig) class FFFNerDataLoader(data_loader.DataLoader): """A class to load dataset for sentence prediction (classification) task.""" def __init__(self, params): self._params = params self._seq_length = params.seq_length self._include_example_id = params.include_example_id self._label_field_is_entity = params.label_field_is_entity self._label_field_entity_type = params.label_field_entity_type if params.label_name: self._label_name_mapping = dict( [params.label_name_is_entity, params.label_name_entity_type]) else: self._label_name_mapping = dict() def name_to_features_spec(self): """Defines features to decode. Subclass may override to append features.""" label_type = LABEL_TYPES_MAP[self._params.label_type] name_to_features = { 'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'is_entity_token_pos': tf.io.FixedLenFeature([1], tf.int64), 'entity_type_token_pos': tf.io.FixedLenFeature([1], tf.int64), self._label_field_is_entity: tf.io.FixedLenFeature([], label_type), self._label_field_entity_type: tf.io.FixedLenFeature([], label_type), 'sentence_id': tf.io.FixedLenFeature([1], tf.int64), 'span_start': tf.io.FixedLenFeature([1], tf.int64), 'span_end': tf.io.FixedLenFeature([1], tf.int64), } if self._include_example_id: name_to_features['example_id'] = tf.io.FixedLenFeature([], tf.int64) return name_to_features def _decode(self, record: tf.Tensor): """Decodes a serialized tf.Example.""" example = tf.io.parse_single_example(record, self.name_to_features_spec()) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in example: t = example[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) example[name] = t return example def _parse(self, record: Mapping[str, tf.Tensor]): """Parses raw tensors into a dict of tensors to be consumed by the model.""" key_mapping = { 'input_ids': 'input_word_ids', 'input_mask': 'input_mask', 'segment_ids': 'input_type_ids', 'is_entity_token_pos': 'is_entity_token_pos', 'entity_type_token_pos': 'entity_type_token_pos', 'is_entity_label': 'is_entity_label', 'entity_type_label': 'entity_type_label', 'sentence_id': 'sentence_id', 'span_start': 'span_start', 'span_end': 'span_end', } ret = {} for record_key in record: if record_key in key_mapping: ret[key_mapping[record_key]] = record[record_key] else: ret[record_key] = record[record_key] return ret def load(self, input_context: Optional[tf.distribute.InputContext] = None): """Returns a tf.dataset.Dataset.""" reader = input_reader.InputReader( dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type), params=self._params, decoder_fn=self._decode, parser_fn=self._parse) return reader.read(input_context)