# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for official.nlp.projects.bigbird.encoder.""" import numpy as np import tensorflow as tf from official.projects.bigbird import encoder class BigBirdEncoderTest(tf.test.TestCase): def test_encoder(self): sequence_length = 1024 batch_size = 2 vocab_size = 1024 network = encoder.BigBirdEncoder( num_layers=1, vocab_size=1024, max_position_embeddings=4096) word_id_data = np.random.randint( vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint(2, size=(batch_size, sequence_length)) outputs = network([word_id_data, mask_data, type_id_data]) self.assertEqual(outputs["sequence_output"].shape, (batch_size, sequence_length, 768)) def test_save_restore(self): sequence_length = 1024 batch_size = 2 vocab_size = 1024 network = encoder.BigBirdEncoder( num_layers=1, vocab_size=1024, max_position_embeddings=4096) word_id_data = np.random.randint( vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint(2, size=(batch_size, sequence_length)) inputs = dict( input_word_ids=word_id_data, input_mask=mask_data, input_type_ids=type_id_data) ref_outputs = network(inputs) model_path = self.get_temp_dir() + "/model" network.save(model_path) loaded = tf.keras.models.load_model(model_path) outputs = loaded(inputs) self.assertAllClose(outputs["sequence_output"], ref_outputs["sequence_output"]) if __name__ == "__main__": tf.test.main()