# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.core.bipartite_matcher.""" import tensorflow as tf from object_detection.matchers import bipartite_matcher class GreedyBipartiteMatcherTest(tf.test.TestCase): def test_get_expected_matches_when_all_rows_are_valid(self): similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]]) num_valid_rows = 2 expected_match_results = [-1, 1, 0] matcher = bipartite_matcher.GreedyBipartiteMatcher() match = matcher.match(similarity_matrix, num_valid_rows=num_valid_rows) with self.test_session() as sess: match_results_out = sess.run(match._match_results) self.assertAllEqual(match_results_out, expected_match_results) def test_get_expected_matches_with_valid_rows_set_to_minus_one(self): similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]]) num_valid_rows = -1 expected_match_results = [-1, 1, 0] matcher = bipartite_matcher.GreedyBipartiteMatcher() match = matcher.match(similarity_matrix, num_valid_rows=num_valid_rows) with self.test_session() as sess: match_results_out = sess.run(match._match_results) self.assertAllEqual(match_results_out, expected_match_results) def test_get_no_matches_with_zero_valid_rows(self): similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]]) num_valid_rows = 0 expected_match_results = [-1, -1, -1] matcher = bipartite_matcher.GreedyBipartiteMatcher() match = matcher.match(similarity_matrix, num_valid_rows=num_valid_rows) with self.test_session() as sess: match_results_out = sess.run(match._match_results) self.assertAllEqual(match_results_out, expected_match_results) def test_get_expected_matches_with_only_one_valid_row(self): similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]]) num_valid_rows = 1 expected_match_results = [-1, -1, 0] matcher = bipartite_matcher.GreedyBipartiteMatcher() match = matcher.match(similarity_matrix, num_valid_rows=num_valid_rows) with self.test_session() as sess: match_results_out = sess.run(match._match_results) self.assertAllEqual(match_results_out, expected_match_results) if __name__ == '__main__': tf.test.main()