# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests object_detection.core.hyperparams_builder.""" import numpy as np import tensorflow as tf from google.protobuf import text_format # TODO: Rewrite third_party imports. from object_detection.builders import hyperparams_builder from object_detection.protos import hyperparams_pb2 slim = tf.contrib.slim class HyperparamsBuilderTest(tf.test.TestCase): # TODO: Make this a public api in slim arg_scope.py. def _get_scope_key(self, op): return getattr(op, '_key_op', str(op)) def test_default_arg_scope_has_conv2d_op(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) self.assertTrue(self._get_scope_key(slim.conv2d) in scope) def test_default_arg_scope_has_separable_conv2d_op(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) self.assertTrue(self._get_scope_key(slim.separable_conv2d) in scope) def test_default_arg_scope_has_conv2d_transpose_op(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) self.assertTrue(self._get_scope_key(slim.conv2d_transpose) in scope) def test_explicit_fc_op_arg_scope_has_fully_connected_op(self): conv_hyperparams_text_proto = """ op: FC regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) self.assertTrue(self._get_scope_key(slim.fully_connected) in scope) def test_separable_conv2d_and_conv2d_and_transpose_have_same_parameters(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) kwargs_1, kwargs_2, kwargs_3 = scope.values() self.assertDictEqual(kwargs_1, kwargs_2) self.assertDictEqual(kwargs_1, kwargs_3) def test_return_l1_regularized_weights(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { weight: 0.5 } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] regularizer = conv_scope_arguments['weights_regularizer'] weights = np.array([1., -1, 4., 2.]) with self.test_session() as sess: result = sess.run(regularizer(tf.constant(weights))) self.assertAllClose(np.abs(weights).sum() * 0.5, result) def test_return_l2_regularizer_weights(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { weight: 0.42 } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] regularizer = conv_scope_arguments['weights_regularizer'] weights = np.array([1., -1, 4., 2.]) with self.test_session() as sess: result = sess.run(regularizer(tf.constant(weights))) self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result) def test_return_non_default_batch_norm_params_with_train_during_train(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } batch_norm { decay: 0.7 center: false scale: true epsilon: 0.03 train: true } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['normalizer_fn'], slim.batch_norm) batch_norm_params = conv_scope_arguments['normalizer_params'] self.assertAlmostEqual(batch_norm_params['decay'], 0.7) self.assertAlmostEqual(batch_norm_params['epsilon'], 0.03) self.assertFalse(batch_norm_params['center']) self.assertTrue(batch_norm_params['scale']) self.assertTrue(batch_norm_params['is_training']) def test_return_batch_norm_params_with_notrain_during_eval(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } batch_norm { decay: 0.7 center: false scale: true epsilon: 0.03 train: true } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=False) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['normalizer_fn'], slim.batch_norm) batch_norm_params = conv_scope_arguments['normalizer_params'] self.assertAlmostEqual(batch_norm_params['decay'], 0.7) self.assertAlmostEqual(batch_norm_params['epsilon'], 0.03) self.assertFalse(batch_norm_params['center']) self.assertTrue(batch_norm_params['scale']) self.assertFalse(batch_norm_params['is_training']) def test_return_batch_norm_params_with_notrain_when_train_is_false(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } batch_norm { decay: 0.7 center: false scale: true epsilon: 0.03 train: false } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['normalizer_fn'], slim.batch_norm) batch_norm_params = conv_scope_arguments['normalizer_params'] self.assertAlmostEqual(batch_norm_params['decay'], 0.7) self.assertAlmostEqual(batch_norm_params['epsilon'], 0.03) self.assertFalse(batch_norm_params['center']) self.assertTrue(batch_norm_params['scale']) self.assertFalse(batch_norm_params['is_training']) def test_do_not_use_batch_norm_if_default(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['normalizer_fn'], None) self.assertEqual(conv_scope_arguments['normalizer_params'], None) def test_use_none_activation(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } activation: NONE """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['activation_fn'], None) def test_use_relu_activation(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu) def test_use_relu_6_activation(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU_6 """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu6) def _assert_variance_in_range(self, initializer, shape, variance, tol=1e-2): with tf.Graph().as_default() as g: with self.test_session(graph=g) as sess: var = tf.get_variable( name='test', shape=shape, dtype=tf.float32, initializer=initializer) sess.run(tf.global_variables_initializer()) values = sess.run(var) self.assertAllClose(np.var(values), variance, tol, tol) def test_variance_in_range_with_variance_scaling_initializer_fan_in(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_IN uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=2. / 100.) def test_variance_in_range_with_variance_scaling_initializer_fan_out(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_OUT uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=2. / 40.) def test_variance_in_range_with_variance_scaling_initializer_fan_avg(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_AVG uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=4. / (100. + 40.)) def test_variance_in_range_with_variance_scaling_initializer_uniform(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_IN uniform: true } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=2. / 100.) def test_variance_in_range_with_truncated_normal_initializer(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { mean: 0.0 stddev: 0.8 } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=0.49, tol=1e-1) if __name__ == '__main__': tf.test.main()