# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for callbacks.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import collections import functools import os from absl.testing import parameterized import numpy as np import tensorflow as tf from tensorflow.python.keras import callbacks_test from tensorflow.python.keras import keras_parameterized from official.vision.image_classification import callbacks _ObservedSummary = collections.namedtuple('_ObservedSummary', ('logdir', 'tag')) def _trivial_function(a): return a class UtilFunctionTests(tf.test.TestCase, parameterized.TestCase): """Tests to check utility functions provided in callbacks.py.""" @parameterized.named_parameters( ('integer', 1), ('float', 1.), ('lambda', lambda: 1), ('partial', functools.partial(_trivial_function, 1))) def test_scalar_from_tensors(self, t): t = tf.Variable(t) value = callbacks.get_scalar_from_tensor(t) print (value) self.assertTrue(np.isscalar(value)) @keras_parameterized.run_with_all_model_types @keras_parameterized.run_all_keras_modes(always_skip_v1=True) class CustomTensorBoardTest(callbacks_test.TestTensorBoardV2): def test_custom_tb_learning_rate(self): os.chdir(self.get_temp_dir()) model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = callbacks.CustomTensorBoard(log_dir=self.logdir, track_lr=True) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = callbacks_test.list_summaries(logdir=self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag='epoch_loss'), _ObservedSummary(logdir=self.train_dir, tag='epoch_learning_rate'), _ObservedSummary(logdir=self.validation_dir, tag='epoch_loss'), }) if __name__ == '__main__': tf.test.main()