# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sentence prediction (classification) task.""" from typing import List, Union from absl import logging import dataclasses import numpy as np import orbit from scipy import stats from sklearn import metrics as sklearn_metrics import tensorflow as tf import tensorflow_hub as hub from official.core import base_task from official.modeling.hyperparams import base_config from official.modeling.hyperparams import config_definitions as cfg from official.nlp.configs import encoders from official.nlp.data import data_loader_factory from official.nlp.modeling import models from official.nlp.tasks import utils METRIC_TYPES = frozenset( ['accuracy', 'matthews_corrcoef', 'pearson_spearman_corr']) @dataclasses.dataclass class ModelConfig(base_config.Config): """A classifier/regressor configuration.""" num_classes: int = 0 use_encoder_pooler: bool = False encoder: encoders.TransformerEncoderConfig = ( encoders.TransformerEncoderConfig()) @dataclasses.dataclass class SentencePredictionConfig(cfg.TaskConfig): """The model config.""" # At most one of `init_checkpoint` and `hub_module_url` can # be specified. init_checkpoint: str = '' init_cls_pooler: bool = False hub_module_url: str = '' metric_type: str = 'accuracy' # Defines the concrete model config at instantiation time. model: ModelConfig = ModelConfig() train_data: cfg.DataConfig = cfg.DataConfig() validation_data: cfg.DataConfig = cfg.DataConfig() @base_task.register_task_cls(SentencePredictionConfig) class SentencePredictionTask(base_task.Task): """Task object for sentence_prediction.""" def __init__(self, params=cfg.TaskConfig, logging_dir=None): super(SentencePredictionTask, self).__init__(params, logging_dir) if params.hub_module_url and params.init_checkpoint: raise ValueError('At most one of `hub_module_url` and ' '`init_checkpoint` can be specified.') if params.hub_module_url: self._hub_module = hub.load(params.hub_module_url) else: self._hub_module = None if params.metric_type not in METRIC_TYPES: raise ValueError('Invalid metric_type: {}'.format(params.metric_type)) self.metric_type = params.metric_type def build_model(self): if self._hub_module: encoder_network = utils.get_encoder_from_hub(self._hub_module) else: encoder_network = encoders.instantiate_encoder_from_cfg( self.task_config.model.encoder) # Currently, we only support bert-style sentence prediction finetuning. return models.BertClassifier( network=encoder_network, num_classes=self.task_config.model.num_classes, initializer=tf.keras.initializers.TruncatedNormal( stddev=self.task_config.model.encoder.initializer_range), use_encoder_pooler=self.task_config.model.use_encoder_pooler) def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor: if self.task_config.model.num_classes == 1: loss = tf.keras.losses.mean_squared_error(labels, model_outputs) else: loss = tf.keras.losses.sparse_categorical_crossentropy( labels, tf.cast(model_outputs, tf.float32), from_logits=True) if aux_losses: loss += tf.add_n(aux_losses) return tf.reduce_mean(loss) def build_inputs(self, params, input_context=None): """Returns tf.data.Dataset for sentence_prediction task.""" if params.input_path == 'dummy': def dummy_data(_): dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32) x = dict( input_word_ids=dummy_ids, input_mask=dummy_ids, input_type_ids=dummy_ids) if self.task_config.model.num_classes == 1: y = tf.zeros((1,), dtype=tf.float32) else: y = tf.zeros((1, 1), dtype=tf.int32) return x, y dataset = tf.data.Dataset.range(1) dataset = dataset.repeat() dataset = dataset.map( dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset return data_loader_factory.get_data_loader(params).load(input_context) def build_metrics(self, training=None): del training if self.task_config.model.num_classes == 1: metrics = [tf.keras.metrics.MeanSquaredError()] else: metrics = [ tf.keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy')] return metrics def process_metrics(self, metrics, labels, model_outputs): for metric in metrics: metric.update_state(labels, model_outputs) def process_compiled_metrics(self, compiled_metrics, labels, model_outputs): compiled_metrics.update_state(labels, model_outputs) def validation_step(self, inputs, model: tf.keras.Model, metrics=None): if self.metric_type == 'accuracy': return super(SentencePredictionTask, self).validation_step(inputs, model, metrics) features, labels = inputs outputs = self.inference_step(features, model) loss = self.build_losses( labels=labels, model_outputs=outputs, aux_losses=model.losses) logs = {self.loss: loss} if self.metric_type == 'matthews_corrcoef': logs.update({ 'sentence_prediction': tf.expand_dims(tf.math.argmax(outputs, axis=1), axis=0), 'labels': labels, }) if self.metric_type == 'pearson_spearman_corr': logs.update({ 'sentence_prediction': outputs, 'labels': labels, }) return logs def aggregate_logs(self, state=None, step_outputs=None): if self.metric_type == 'accuracy': return None if state is None: state = {'sentence_prediction': [], 'labels': []} # TODO(b/160712818): Add support for concatenating partial batches. state['sentence_prediction'].append( np.concatenate([v.numpy() for v in step_outputs['sentence_prediction']], axis=0)) state['labels'].append( np.concatenate([v.numpy() for v in step_outputs['labels']], axis=0)) return state def reduce_aggregated_logs(self, aggregated_logs): if self.metric_type == 'accuracy': return None elif self.metric_type == 'matthews_corrcoef': preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0) preds = np.reshape(preds, -1) labels = np.concatenate(aggregated_logs['labels'], axis=0) labels = np.reshape(labels, -1) return { self.metric_type: sklearn_metrics.matthews_corrcoef(preds, labels) } elif self.metric_type == 'pearson_spearman_corr': preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0) preds = np.reshape(preds, -1) labels = np.concatenate(aggregated_logs['labels'], axis=0) labels = np.reshape(labels, -1) pearson_corr = stats.pearsonr(preds, labels)[0] spearman_corr = stats.spearmanr(preds, labels)[0] corr_metric = (pearson_corr + spearman_corr) / 2 return {self.metric_type: corr_metric} def initialize(self, model): """Load a pretrained checkpoint (if exists) and then train from iter 0.""" ckpt_dir_or_file = self.task_config.init_checkpoint if tf.io.gfile.isdir(ckpt_dir_or_file): ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file) if not ckpt_dir_or_file: return pretrain2finetune_mapping = { 'encoder': model.checkpoint_items['encoder'], } # TODO(b/160251903): Investigate why no pooler dense improves finetuning # accuracies. if self.task_config.init_cls_pooler: pretrain2finetune_mapping[ 'next_sentence.pooler_dense'] = model.checkpoint_items[ 'sentence_prediction.pooler_dense'] ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping) status = ckpt.read(ckpt_dir_or_file) status.expect_partial().assert_existing_objects_matched() logging.info('Finished loading pretrained checkpoint from %s', ckpt_dir_or_file) def predict(task: SentencePredictionTask, params: cfg.DataConfig, model: tf.keras.Model) -> List[Union[int, float]]: """Predicts on the input data. Args: task: A `SentencePredictionTask` object. params: A `cfg.DataConfig` object. model: A keras.Model. Returns: A list of predictions with length of `num_examples`. For regression task, each element in the list is the predicted score; for classification task, each element is the predicted class id. """ is_regression = task.task_config.model.num_classes == 1 @tf.function def predict_step(iterator): """Predicts on distributed devices.""" def _replicated_step(inputs): """Replicated prediction calculation.""" x, _ = inputs outputs = task.inference_step(x, model) if is_regression: return outputs else: return tf.argmax(outputs, axis=-1) outputs = tf.distribute.get_strategy().run( _replicated_step, args=(next(iterator),)) return tf.nest.map_structure( tf.distribute.get_strategy().experimental_local_results, outputs) def reduce_fn(state, outputs): """Concatenates model's outputs.""" for per_replica_batch_predictions in outputs: state.extend(per_replica_batch_predictions) return state loop_fn = orbit.utils.create_loop_fn(predict_step) dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(), task.build_inputs, params) # Set `num_steps` to -1 to exhaust the dataset. predictions = loop_fn( iter(dataset), num_steps=-1, state=[], reduce_fn=reduce_fn) return predictions