# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Loads dataset for the question answering (e.g, SQuAD) task.""" from typing import Mapping, Optional import dataclasses import tensorflow as tf from official.core import input_reader from official.modeling.hyperparams import config_definitions as cfg from official.nlp.data import data_loader_factory @dataclasses.dataclass class QADataConfig(cfg.DataConfig): """Data config for question answering task (tasks/question_answering).""" input_path: str = '' global_batch_size: int = 48 is_training: bool = True seq_length: int = 384 # Settings below are question answering specific. version_2_with_negative: bool = False # Settings below are only used for eval mode. input_preprocessed_data_path: str = '' doc_stride: int = 128 query_length: int = 64 vocab_file: str = '' tokenization: str = 'WordPiece' # WordPiece or SentencePiece do_lower_case: bool = True @data_loader_factory.register_data_loader_cls(QADataConfig) class QuestionAnsweringDataLoader: """A class to load dataset for sentence prediction (classification) task.""" def __init__(self, params): self._params = params self._seq_length = params.seq_length self._is_training = params.is_training def _decode(self, record: tf.Tensor): """Decodes a serialized tf.Example.""" name_to_features = { 'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), } if self._is_training: name_to_features['start_positions'] = tf.io.FixedLenFeature([], tf.int64) name_to_features['end_positions'] = tf.io.FixedLenFeature([], tf.int64) else: name_to_features['unique_ids'] = tf.io.FixedLenFeature([], tf.int64) example = tf.io.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in example: t = example[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) example[name] = t return example def _parse(self, record: Mapping[str, tf.Tensor]): """Parses raw tensors into a dict of tensors to be consumed by the model.""" x, y = {}, {} for name, tensor in record.items(): if name in ('start_positions', 'end_positions'): y[name] = tensor elif name == 'input_ids': x['input_word_ids'] = tensor elif name == 'segment_ids': x['input_type_ids'] = tensor else: x[name] = tensor return (x, y) def load(self, input_context: Optional[tf.distribute.InputContext] = None): """Returns a tf.dataset.Dataset.""" reader = input_reader.InputReader( params=self._params, decoder_fn=self._decode, parser_fn=self._parse) return reader.read(input_context)