# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for mnist.train.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags from absl.testing import parameterized import numpy as np import tensorflow as tf import train FLAGS = flags.FLAGS mock = tf.test.mock class TrainTest(tf.test.TestCase, parameterized.TestCase): @mock.patch.object(train, 'data_provider', autospec=True) def test_run_one_train_step(self, mock_data_provider): FLAGS.max_number_of_steps = 1 FLAGS.gan_type = 'unconditional' FLAGS.batch_size = 5 FLAGS.grid_size = 1 tf.set_random_seed(1234) # Mock input pipeline. mock_imgs = np.zeros([FLAGS.batch_size, 28, 28, 1], dtype=np.float32) mock_lbls = np.concatenate( (np.ones([FLAGS.batch_size, 1], dtype=np.int32), np.zeros([FLAGS.batch_size, 9], dtype=np.int32)), axis=1) mock_data_provider.provide_data.return_value = (mock_imgs, mock_lbls, None) train.main(None) @parameterized.named_parameters( ('Unconditional', 'unconditional'), ('Conditional', 'conditional'), ('InfoGAN', 'infogan')) def test_build_graph(self, gan_type): FLAGS.max_number_of_steps = 0 FLAGS.gan_type = gan_type # Mock input pipeline. mock_imgs = np.zeros([FLAGS.batch_size, 28, 28, 1], dtype=np.float32) mock_lbls = np.concatenate( (np.ones([FLAGS.batch_size, 1], dtype=np.int32), np.zeros([FLAGS.batch_size, 9], dtype=np.int32)), axis=1) with mock.patch.object(train, 'data_provider') as mock_data_provider: mock_data_provider.provide_data.return_value = ( mock_imgs, mock_lbls, None) train.main(None) if __name__ == '__main__': tf.test.main()