# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Preprocess dataset and construct any necessary artifacts.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import atexit import contextlib import gc import hashlib import multiprocessing import json import os import pickle import signal import socket import subprocess import time import timeit import typing # pylint: disable=wrong-import-order from absl import app as absl_app from absl import flags import numpy as np import pandas as pd import six import tensorflow as tf # pylint: enable=wrong-import-order from official.datasets import movielens from official.recommendation import constants as rconst from official.recommendation import stat_utils from official.recommendation import popen_helper DATASET_TO_NUM_USERS_AND_ITEMS = { "ml-1m": (6040, 3706), "ml-20m": (138493, 26744) } # Number of batches to run per epoch when using synthetic data. At high batch # sizes, we run for more batches than with real data, which is good since # running more batches reduces noise when measuring the average batches/second. SYNTHETIC_BATCHES_PER_EPOCH = 2000 class NCFDataset(object): """Container for training and testing data.""" def __init__(self, user_map, item_map, num_data_readers, cache_paths, num_train_positives, deterministic=False): # type: (dict, dict, int, rconst.Paths, int, bool) -> None """Assign key values for recommendation dataset. Args: user_map: Dict mapping raw user ids to regularized ids. item_map: Dict mapping raw item ids to regularized ids. num_data_readers: The number of reader Datasets used during training. cache_paths: Object containing locations for various cache files. num_train_positives: The number of positive training examples in the dataset. deterministic: Operations should use deterministic, order preserving methods, even at the cost of performance. """ self.user_map = {int(k): int(v) for k, v in user_map.items()} self.item_map = {int(k): int(v) for k, v in item_map.items()} self.num_users = len(user_map) self.num_items = len(item_map) self.num_data_readers = num_data_readers self.cache_paths = cache_paths self.num_train_positives = num_train_positives self.deterministic = deterministic def _filter_index_sort(raw_rating_path, match_mlperf): # type: (str, bool) -> (pd.DataFrame, dict, dict) """Read in data CSV, and output structured data. This function reads in the raw CSV of positive items, and performs three preprocessing transformations: 1) Filter out all users who have not rated at least a certain number of items. (Typically 20 items) 2) Zero index the users and items such that the largest user_id is `num_users - 1` and the largest item_id is `num_items - 1` 3) Sort the dataframe by user_id, with timestamp as a secondary sort key. This allows the dataframe to be sliced by user in-place, and for the last item to be selected simply by calling the `-1` index of a user's slice. While all of these transformations are performed by Pandas (and are therefore single-threaded), they only take ~2 minutes, and the overhead to apply a MapReduce pattern to parallel process the dataset adds significant complexity for no computational gain. For a larger dataset parallelizing this preprocessing could yield speedups. (Also, this preprocessing step is only performed once for an entire run. Args: raw_rating_path: The path to the CSV which contains the raw dataset. match_mlperf: If True, change the sorting algorithm to match the MLPerf reference implementation. Returns: A filtered, zero-index remapped, sorted dataframe, a dict mapping raw user IDs to regularized user IDs, and a dict mapping raw item IDs to regularized item IDs. """ with tf.gfile.Open(raw_rating_path) as f: df = pd.read_csv(f) # Get the info of users who have more than 20 ratings on items grouped = df.groupby(movielens.USER_COLUMN) df = grouped.filter( lambda x: len(x) >= rconst.MIN_NUM_RATINGS) # type: pd.DataFrame original_users = df[movielens.USER_COLUMN].unique() original_items = df[movielens.ITEM_COLUMN].unique() # Map the ids of user and item to 0 based index for following processing tf.logging.info("Generating user_map and item_map...") user_map = {user: index for index, user in enumerate(original_users)} item_map = {item: index for index, item in enumerate(original_items)} df[movielens.USER_COLUMN] = df[movielens.USER_COLUMN].apply( lambda user: user_map[user]) df[movielens.ITEM_COLUMN] = df[movielens.ITEM_COLUMN].apply( lambda item: item_map[item]) num_users = len(original_users) num_items = len(original_items) assert num_users <= np.iinfo(np.int32).max assert num_items <= np.iinfo(np.uint16).max assert df[movielens.USER_COLUMN].max() == num_users - 1 assert df[movielens.ITEM_COLUMN].max() == num_items - 1 # This sort is used to shard the dataframe by user, and later to select # the last item for a user to be used in validation. tf.logging.info("Sorting by user, timestamp...") if match_mlperf: # This sort is equivalent to the non-MLPerf sort, except that the order of # items with the same user and timestamp are sometimes different. For some # reason, this sort results in a better hit-rate during evaluation, matching # the performance of the MLPerf reference implementation. df.sort_values(by=movielens.TIMESTAMP_COLUMN, inplace=True) df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN], inplace=True, kind="mergesort") else: df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN], inplace=True) df = df.reset_index() # The dataframe does not reconstruct indicies in the # sort or filter steps. return df, user_map, item_map def _train_eval_map_fn(args): """Split training and testing data and generate testing negatives. This function is called as part of a multiprocessing map. The principle input is a shard, which contains a sorted array of users and corresponding items for each user, where items have already been sorted in ascending order by timestamp. (Timestamp is not passed to avoid the serialization cost of sending it to the map function.) For each user, all but the last item is written into a pickle file which the training data producer can consume on as needed. The last item for a user is a validation point; it is written under a separate key and will be used later to generate the evaluation data. Args: shard: A dict containing the user and item arrays. shard_id: The id of the shard provided. This is used to number the training shard pickle files. num_items: The cardinality of the item set, which determines the set from which validation negatives should be drawn. cache_paths: rconst.Paths object containing locations for various cache files. """ shard, shard_id, num_items, cache_paths = args users = shard[movielens.USER_COLUMN] items = shard[movielens.ITEM_COLUMN] # This produces index boundaries which can be used to slice by user. delta = users[1:] - users[:-1] boundaries = ([0] + (np.argwhere(delta)[:, 0] + 1).tolist() + [users.shape[0]]) train_blocks = [] test_positives = [] for i in range(len(boundaries) - 1): # This is simply a vector of repeated values such that the shard could be # represented compactly with a tuple of tuples: # ((user_id, items), (user_id, items), ...) # rather than: # user_id_vector, item_id_vector # However the additional nested structure significantly increases the # serialization and deserialization cost such that it is not worthwhile. block_user = users[boundaries[i]:boundaries[i+1]] assert len(set(block_user)) == 1 block_items = items[boundaries[i]:boundaries[i+1]] train_blocks.append((block_user[:-1], block_items[:-1])) test_positives.append((block_user[0], block_items[-1])) train_users = np.concatenate([i[0] for i in train_blocks]) train_items = np.concatenate([i[1] for i in train_blocks]) test_pos_users = np.array([i[0] for i in test_positives], dtype=train_users.dtype) test_pos_items = np.array([i[1] for i in test_positives], dtype=train_items.dtype) train_shard_fpath = cache_paths.train_shard_template.format( str(shard_id).zfill(5)) with tf.gfile.Open(train_shard_fpath, "wb") as f: pickle.dump({ rconst.TRAIN_KEY: { movielens.USER_COLUMN: train_users, movielens.ITEM_COLUMN: train_items, }, rconst.EVAL_KEY: { movielens.USER_COLUMN: test_pos_users, movielens.ITEM_COLUMN: test_pos_items, } }, f) def generate_train_eval_data(df, approx_num_shards, num_items, cache_paths, match_mlperf): # type: (pd.DataFrame, int, int, rconst.Paths, bool) -> None """Construct training and evaluation datasets. This function manages dataset construction and validation that the transformations have produced correct results. The particular logic of transforming the data is performed in _train_eval_map_fn(). Args: df: The dataframe containing the entire dataset. It is essential that this dataframe be produced by _filter_index_sort(), as subsequent transformations rely on `df` having particular structure. approx_num_shards: The approximate number of similarly sized shards to construct from `df`. The MovieLens has severe imbalances where some users have interacted with many items; this is common among datasets involving user data. Rather than attempt to aggressively balance shard size, this function simply allows shards to "overflow" which can produce a number of shards which is less than `approx_num_shards`. This small degree of imbalance does not impact performance; however it does mean that one should not expect approx_num_shards to be the ACTUAL number of shards. num_items: The cardinality of the item set. cache_paths: rconst.Paths object containing locations for various cache files. match_mlperf: If True, sample eval negative with replacements, which the MLPerf reference implementation does. """ num_rows = len(df) approximate_partitions = np.linspace( 0, num_rows, approx_num_shards + 1).astype("int") start_ind, end_ind = 0, 0 shards = [] for i in range(1, approx_num_shards + 1): end_ind = approximate_partitions[i] while (end_ind < num_rows and df[movielens.USER_COLUMN][end_ind - 1] == df[movielens.USER_COLUMN][end_ind]): end_ind += 1 if end_ind <= start_ind: continue # imbalance from prior shard. df_shard = df[start_ind:end_ind] user_shard = df_shard[movielens.USER_COLUMN].values.astype(np.int32) item_shard = df_shard[movielens.ITEM_COLUMN].values.astype(np.uint16) shards.append({ movielens.USER_COLUMN: user_shard, movielens.ITEM_COLUMN: item_shard, }) start_ind = end_ind assert end_ind == num_rows approx_num_shards = len(shards) tf.logging.info("Splitting train and test data and generating {} test " "negatives per user...".format(rconst.NUM_EVAL_NEGATIVES)) tf.gfile.MakeDirs(cache_paths.train_shard_subdir) map_args = [(shards[i], i, num_items, cache_paths) for i in range(approx_num_shards)] with popen_helper.get_pool(multiprocessing.cpu_count()) as pool: pool.map(_train_eval_map_fn, map_args) # pylint: disable=no-member def construct_cache(dataset, data_dir, num_data_readers, match_mlperf, deterministic, cache_id=None): # type: (str, str, int, bool, bool, typing.Optional[int]) -> NCFDataset """Load and digest data CSV into a usable form. Args: dataset: The name of the dataset to be used. data_dir: The root directory of the dataset. num_data_readers: The number of parallel processes which will request data during training. match_mlperf: If True, change the behavior of the cache construction to match the MLPerf reference implementation. deterministic: Try to enforce repeatable behavior, even at the cost of performance. """ cache_paths = rconst.Paths(data_dir=data_dir, cache_id=cache_id) num_data_readers = (num_data_readers or int(multiprocessing.cpu_count() / 2) or 1) approx_num_shards = int(movielens.NUM_RATINGS[dataset] // rconst.APPROX_PTS_PER_TRAIN_SHARD) or 1 st = timeit.default_timer() cache_root = os.path.join(data_dir, cache_paths.cache_root) if tf.gfile.Exists(cache_root): raise ValueError("{} unexpectedly already exists." .format(cache_paths.cache_root)) tf.logging.info("Creating cache directory. This should be deleted on exit.") tf.gfile.MakeDirs(cache_paths.cache_root) raw_rating_path = os.path.join(data_dir, dataset, movielens.RATINGS_FILE) df, user_map, item_map = _filter_index_sort(raw_rating_path, match_mlperf) num_users, num_items = DATASET_TO_NUM_USERS_AND_ITEMS[dataset] if num_users != len(user_map): raise ValueError("Expected to find {} users, but found {}".format( num_users, len(user_map))) if num_items != len(item_map): raise ValueError("Expected to find {} items, but found {}".format( num_items, len(item_map))) generate_train_eval_data(df=df, approx_num_shards=approx_num_shards, num_items=len(item_map), cache_paths=cache_paths, match_mlperf=match_mlperf) del approx_num_shards # value may have changed. ncf_dataset = NCFDataset(user_map=user_map, item_map=item_map, num_data_readers=num_data_readers, cache_paths=cache_paths, num_train_positives=len(df) - len(user_map), deterministic=deterministic) run_time = timeit.default_timer() - st tf.logging.info("Cache construction complete. Time: {:.1f} sec." .format(run_time)) return ncf_dataset def _shutdown(proc): # type: (subprocess.Popen) -> None """Convenience function to cleanly shut down async generation process.""" tf.logging.info("Shutting down train data creation subprocess.") try: try: proc.send_signal(signal.SIGINT) time.sleep(5) if proc.returncode is not None: return # SIGINT was handled successfully within 5 seconds except socket.error: pass # Otherwise another second of grace period and then force kill the process. time.sleep(1) proc.terminate() except: # pylint: disable=broad-except tf.logging.error("Data generation subprocess could not be killed.") def instantiate_pipeline(dataset, data_dir, batch_size, eval_batch_size, num_data_readers=None, num_neg=4, epochs_per_cycle=1, match_mlperf=False, deterministic=False, use_subprocess=True, cache_id=None): # type: (...) -> (NCFDataset, typing.Callable) """Preprocess data and start negative generation subprocess.""" tf.logging.info("Beginning data preprocessing.") ncf_dataset = construct_cache(dataset=dataset, data_dir=data_dir, num_data_readers=num_data_readers, match_mlperf=match_mlperf, deterministic=deterministic, cache_id=cache_id) # By limiting the number of workers we guarantee that the worker # pool underlying the training generation doesn't starve other processes. num_workers = int(multiprocessing.cpu_count() * 0.75) or 1 flags_ = { "data_dir": data_dir, "cache_id": ncf_dataset.cache_paths.cache_id, "num_neg": num_neg, "num_train_positives": ncf_dataset.num_train_positives, "num_items": ncf_dataset.num_items, "num_users": ncf_dataset.num_users, "num_readers": ncf_dataset.num_data_readers, "epochs_per_cycle": epochs_per_cycle, "train_batch_size": batch_size, "eval_batch_size": eval_batch_size, "num_workers": num_workers, "redirect_logs": use_subprocess, "use_tf_logging": not use_subprocess, "ml_perf": match_mlperf, } if ncf_dataset.deterministic: flags_["seed"] = stat_utils.random_int32() tf.gfile.MakeDirs(data_dir) # We write to a temp file then atomically rename it to the final file, # because writing directly to the final file can cause the data generation # async process to read a partially written JSON file. flagfile_temp = os.path.join(ncf_dataset.cache_paths.cache_root, rconst.FLAGFILE_TEMP) tf.logging.info("Preparing flagfile for async data generation in {} ..." .format(flagfile_temp)) with tf.gfile.Open(flagfile_temp, "w") as f: for k, v in six.iteritems(flags_): f.write("--{}={}\n".format(k, v)) flagfile = os.path.join(ncf_dataset.cache_paths.cache_root, rconst.FLAGFILE) tf.gfile.Rename(flagfile_temp, flagfile) tf.logging.info( "Wrote flagfile for async data generation in {}." .format(flagfile)) if use_subprocess: tf.logging.info("Creating training file subprocess.") subproc_env = os.environ.copy() # The subprocess uses TensorFlow for tf.gfile, but it does not need GPU # resources and by default will try to allocate GPU memory. This would cause # contention with the main training process. subproc_env["CUDA_VISIBLE_DEVICES"] = "" subproc_args = popen_helper.INVOCATION + [ "--data_dir", data_dir, "--cache_id", str(ncf_dataset.cache_paths.cache_id)] tf.logging.info( "Generation subprocess command: {}".format(" ".join(subproc_args))) proc = subprocess.Popen(args=subproc_args, shell=False, env=subproc_env) cleanup_called = {"finished": False} @atexit.register def cleanup(): """Remove files and subprocess from data generation.""" if cleanup_called["finished"]: return if use_subprocess: _shutdown(proc) try: tf.gfile.DeleteRecursively(ncf_dataset.cache_paths.cache_root) except tf.errors.NotFoundError: pass cleanup_called["finished"] = True for _ in range(300): if tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive): break time.sleep(1) # allow `alive` file to be written if not tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive): raise ValueError("Generation subprocess did not start correctly. Data will " "not be available; exiting to avoid waiting forever.") return ncf_dataset, cleanup def make_deserialize(params, batch_size, training=False): """Construct deserialize function for training and eval fns.""" feature_map = { movielens.USER_COLUMN: tf.FixedLenFeature([], dtype=tf.string), movielens.ITEM_COLUMN: tf.FixedLenFeature([], dtype=tf.string), } if training: feature_map["labels"] = tf.FixedLenFeature([], dtype=tf.string) else: feature_map[rconst.DUPLICATE_MASK] = tf.FixedLenFeature([], dtype=tf.string) def deserialize(examples_serialized): """Called by Dataset.map() to convert batches of records to tensors.""" features = tf.parse_single_example(examples_serialized, feature_map) users = tf.reshape(tf.decode_raw( features[movielens.USER_COLUMN], tf.int32), (batch_size,)) items = tf.reshape(tf.decode_raw( features[movielens.ITEM_COLUMN], tf.uint16), (batch_size,)) if params["use_tpu"]: items = tf.cast(items, tf.int32) # TPU doesn't allow uint16 infeed. if not training: dupe_mask = tf.reshape(tf.cast(tf.decode_raw( features[rconst.DUPLICATE_MASK], tf.int8), tf.bool), (batch_size,)) return { movielens.USER_COLUMN: users, movielens.ITEM_COLUMN: items, rconst.DUPLICATE_MASK: dupe_mask, } labels = tf.reshape(tf.cast(tf.decode_raw( features["labels"], tf.int8), tf.bool), (batch_size,)) return { movielens.USER_COLUMN: users, movielens.ITEM_COLUMN: items, }, labels return deserialize def hash_pipeline(dataset, deterministic): # type: (tf.data.Dataset, bool) -> None """Utility function for detecting non-determinism in the data pipeline. Args: dataset: a tf.data.Dataset generated by the input_fn deterministic: Does the input_fn expect the dataset to be deterministic. (i.e. fixed seed, sloppy=False, etc.) """ if not deterministic: tf.logging.warning("Data pipeline is not marked as deterministic. Hash " "values are not expected to be meaningful.") batch = dataset.make_one_shot_iterator().get_next() md5 = hashlib.md5() count = 0 first_batch_hash = b"" with tf.Session() as sess: while True: try: result = sess.run(batch) if isinstance(result, tuple): result = result[0] # only hash features except tf.errors.OutOfRangeError: break count += 1 md5.update(memoryview(result[movielens.USER_COLUMN]).tobytes()) md5.update(memoryview(result[movielens.ITEM_COLUMN]).tobytes()) if count == 1: first_batch_hash = md5.hexdigest() overall_hash = md5.hexdigest() tf.logging.info("Batch count: {}".format(count)) tf.logging.info(" [pipeline_hash] First batch hash: {}".format( first_batch_hash)) tf.logging.info(" [pipeline_hash] All batches hash: {}".format(overall_hash)) def make_input_fn(ncf_dataset, is_training): # type: (typing.Optional[NCFDataset], bool) -> (typing.Callable, str, int) """Construct training input_fn for the current epoch.""" if ncf_dataset is None: return make_synthetic_input_fn(is_training) if not tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive): # The generation subprocess must have been alive at some point, because we # earlier checked that the subproc_alive file existed. raise ValueError("Generation subprocess unexpectedly died. Data will not " "be available; exiting to avoid waiting forever.") if is_training: train_epoch_dir = ncf_dataset.cache_paths.train_epoch_dir while not tf.gfile.Exists(train_epoch_dir): tf.logging.info("Waiting for {} to exist.".format(train_epoch_dir)) time.sleep(1) train_data_dirs = tf.gfile.ListDirectory(train_epoch_dir) while not train_data_dirs: tf.logging.info("Waiting for data folder to be created.") time.sleep(1) train_data_dirs = tf.gfile.ListDirectory(train_epoch_dir) train_data_dirs.sort() # names are zfilled so that # lexicographic sort == numeric sort record_dir = os.path.join(train_epoch_dir, train_data_dirs[0]) template = rconst.TRAIN_RECORD_TEMPLATE else: record_dir = ncf_dataset.cache_paths.eval_data_subdir template = rconst.EVAL_RECORD_TEMPLATE ready_file = os.path.join(record_dir, rconst.READY_FILE) while not tf.gfile.Exists(ready_file): tf.logging.info("Waiting for records in {} to be ready".format(record_dir)) time.sleep(1) with tf.gfile.Open(ready_file, "r") as f: epoch_metadata = json.load(f) # This value is used to check that the batch count from the subprocess matches # the batch count expected by the main thread. batch_count = epoch_metadata["batch_count"] def input_fn(params): """Generated input_fn for the given epoch.""" if is_training: batch_size = params["batch_size"] else: # Estimator has "eval_batch_size" included in the params, but TPUEstimator # populates "batch_size" to the appropriate value. batch_size = params.get("eval_batch_size") or params["batch_size"] if epoch_metadata["batch_size"] != batch_size: raise ValueError( "Records were constructed with batch size {}, but input_fn was given " "a batch size of {}. This will result in a deserialization error in " "tf.parse_single_example." .format(epoch_metadata["batch_size"], batch_size)) record_files = tf.data.Dataset.list_files( os.path.join(record_dir, template.format("*")), shuffle=False) interleave = tf.contrib.data.parallel_interleave( tf.data.TFRecordDataset, cycle_length=4, block_length=100000, sloppy=not ncf_dataset.deterministic, prefetch_input_elements=4, ) deserialize = make_deserialize(params, batch_size, is_training) dataset = record_files.apply(interleave) dataset = dataset.map(deserialize, num_parallel_calls=4) dataset = dataset.prefetch(32) if params.get("hash_pipeline"): hash_pipeline(dataset, ncf_dataset.deterministic) return dataset return input_fn, record_dir, batch_count def make_synthetic_input_fn(is_training): """Construct training input_fn that uses synthetic data.""" def input_fn(params): """Generated input_fn for the given epoch.""" batch_size = (params["batch_size"] if is_training else params["eval_batch_size"] or params["batch_size"]) num_users = params["num_users"] num_items = params["num_items"] users = tf.random_uniform([batch_size], dtype=tf.int32, minval=0, maxval=num_users) items = tf.random_uniform([batch_size], dtype=tf.int32, minval=0, maxval=num_items) if is_training: labels = tf.random_uniform([batch_size], dtype=tf.int32, minval=0, maxval=2) data = { movielens.USER_COLUMN: users, movielens.ITEM_COLUMN: items, }, labels else: dupe_mask = tf.cast(tf.random_uniform([batch_size], dtype=tf.int32, minval=0, maxval=2), tf.bool) data = { movielens.USER_COLUMN: users, movielens.ITEM_COLUMN: items, rconst.DUPLICATE_MASK: dupe_mask, } dataset = tf.data.Dataset.from_tensors(data).repeat( SYNTHETIC_BATCHES_PER_EPOCH) dataset = dataset.prefetch(32) return dataset return input_fn, None, SYNTHETIC_BATCHES_PER_EPOCH