# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Asynchronously generate TFRecords files for NCF.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import atexit import contextlib import datetime import gc import multiprocessing import json import os import pickle import signal import sys import tempfile import time import timeit import traceback import typing import numpy as np import tensorflow as tf from absl import app as absl_app from absl import flags from official.datasets import movielens from official.recommendation import constants as rconst from official.recommendation import stat_utils from official.recommendation import popen_helper _log_file = None def log_msg(msg): """Include timestamp info when logging messages to a file.""" if flags.FLAGS.use_tf_logging: tf.logging.info(msg) return if flags.FLAGS.redirect_logs: timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S") print("[{}] {}".format(timestamp, msg), file=_log_file) else: print(msg, file=_log_file) if _log_file: _log_file.flush() def get_cycle_folder_name(i): return "cycle_{}".format(str(i).zfill(5)) def _process_shard(args): # type: ((str, int, int, int, bool)) -> (np.ndarray, np.ndarray, np.ndarray) """Read a shard of training data and return training vectors. Args: shard_path: The filepath of the positive instance training shard. num_items: The cardinality of the item set. num_neg: The number of negatives to generate per positive example. seed: Random seed to be used when generating negatives. is_training: Generate training (True) or eval (False) data. match_mlperf: Match the MLPerf reference behavior """ shard_path, num_items, num_neg, seed, is_training, match_mlperf = args np.random.seed(seed) # The choice to store the training shards in files rather than in memory # is motivated by the fact that multiprocessing serializes arguments, # transmits them to map workers, and then deserializes them. By storing the # training shards in files, the serialization work only needs to be done once. # # A similar effect could be achieved by simply holding pickled bytes in # memory, however the processing is not I/O bound and is therefore # unnecessary. with tf.gfile.Open(shard_path, "rb") as f: shard = pickle.load(f) users = shard[rconst.TRAIN_KEY][movielens.USER_COLUMN] items = shard[rconst.TRAIN_KEY][movielens.ITEM_COLUMN] if not is_training: # For eval, there is one positive which was held out from the training set. test_positive_dict = dict(zip( shard[rconst.EVAL_KEY][movielens.USER_COLUMN], shard[rconst.EVAL_KEY][movielens.ITEM_COLUMN])) delta = users[1:] - users[:-1] boundaries = ([0] + (np.argwhere(delta)[:, 0] + 1).tolist() + [users.shape[0]]) user_blocks = [] item_blocks = [] label_blocks = [] for i in range(len(boundaries) - 1): assert len(set(users[boundaries[i]:boundaries[i+1]])) == 1 current_user = users[boundaries[i]] positive_items = items[boundaries[i]:boundaries[i+1]] positive_set = set(positive_items) if positive_items.shape[0] != len(positive_set): raise ValueError("Duplicate entries detected.") if is_training: n_pos = len(positive_set) negatives = stat_utils.sample_with_exclusion( num_items, positive_set, n_pos * num_neg, replacement=True) else: if not match_mlperf: # The mlperf reference allows the holdout item to appear as a negative. # Including it in the positive set makes the eval more stringent, # because an appearance of the test item would be removed by # deduplication rules. (Effectively resulting in a minute reduction of # NUM_EVAL_NEGATIVES) positive_set.add(test_positive_dict[current_user]) negatives = stat_utils.sample_with_exclusion( num_items, positive_set, num_neg, replacement=match_mlperf) positive_set = [test_positive_dict[current_user]] n_pos = len(positive_set) assert n_pos == 1 user_blocks.append(current_user * np.ones( (n_pos * (1 + num_neg),), dtype=np.int32)) item_blocks.append( np.array(list(positive_set) + negatives, dtype=np.uint16)) labels_for_user = np.zeros((n_pos * (1 + num_neg),), dtype=np.int8) labels_for_user[:n_pos] = 1 label_blocks.append(labels_for_user) users_out = np.concatenate(user_blocks) items_out = np.concatenate(item_blocks) labels_out = np.concatenate(label_blocks) assert users_out.shape == items_out.shape == labels_out.shape return users_out, items_out, labels_out def _construct_record(users, items, labels=None, dupe_mask=None): """Convert NumPy arrays into a TFRecords entry.""" feature_dict = { movielens.USER_COLUMN: tf.train.Feature( bytes_list=tf.train.BytesList(value=[memoryview(users).tobytes()])), movielens.ITEM_COLUMN: tf.train.Feature( bytes_list=tf.train.BytesList(value=[memoryview(items).tobytes()])), } if labels is not None: feature_dict["labels"] = tf.train.Feature( bytes_list=tf.train.BytesList(value=[memoryview(labels).tobytes()])) if dupe_mask is not None: feature_dict[rconst.DUPLICATE_MASK] = tf.train.Feature( bytes_list=tf.train.BytesList(value=[memoryview(dupe_mask).tobytes()])) return tf.train.Example( features=tf.train.Features(feature=feature_dict)).SerializeToString() def sigint_handler(signal, frame): log_msg("Shutting down worker.") def init_worker(): signal.signal(signal.SIGINT, sigint_handler) def _construct_records( is_training, # type: bool train_cycle, # type: typing.Optional[int] num_workers, # type: int cache_paths, # type: rconst.Paths num_readers, # type: int num_neg, # type: int num_positives, # type: int num_items, # type: int epochs_per_cycle, # type: int batch_size, # type: int training_shards, # type: typing.List[str] deterministic=False, # type: bool match_mlperf=False # type: bool ): """Generate false negatives and write TFRecords files. Args: is_training: Are training records (True) or eval records (False) created. train_cycle: Integer of which cycle the generated data is for. num_workers: Number of multiprocessing workers to use for negative generation. cache_paths: Paths object with information of where to write files. num_readers: The number of reader datasets in the input_fn. num_neg: The number of false negatives per positive example. num_positives: The number of positive examples. This value is used to pre-allocate arrays while the imap is still running. (NumPy does not allow dynamic arrays.) num_items: The cardinality of the item set. epochs_per_cycle: The number of epochs worth of data to construct. batch_size: The expected batch size used during training. This is used to properly batch data when writing TFRecords. training_shards: The picked positive examples from which to generate negatives. """ st = timeit.default_timer() if not is_training: # Later logic assumes that all items for a given user are in the same batch. assert not batch_size % (rconst.NUM_EVAL_NEGATIVES + 1) assert num_neg == rconst.NUM_EVAL_NEGATIVES assert epochs_per_cycle == 1 or is_training num_workers = min([num_workers, len(training_shards) * epochs_per_cycle]) num_pts = num_positives * (1 + num_neg) # Equivalent to `int(ceil(num_pts / batch_size)) * batch_size`, but without # precision concerns num_pts_with_padding = (num_pts + batch_size - 1) // batch_size * batch_size num_padding = num_pts_with_padding - num_pts # We choose a different random seed for each process, so that the processes # will not all choose the same random numbers. process_seeds = [stat_utils.random_int32() for _ in training_shards * epochs_per_cycle] map_args = [ (shard, num_items, num_neg, process_seeds[i], is_training, match_mlperf) for i, shard in enumerate(training_shards * epochs_per_cycle)] with popen_helper.get_pool(num_workers, init_worker) as pool: map_fn = pool.imap if deterministic else pool.imap_unordered # pylint: disable=no-member data_generator = map_fn(_process_shard, map_args) data = [ np.zeros(shape=(num_pts_with_padding,), dtype=np.int32) - 1, np.zeros(shape=(num_pts_with_padding,), dtype=np.uint16), np.zeros(shape=(num_pts_with_padding,), dtype=np.int8), ] # Training data is shuffled. Evaluation data MUST not be shuffled. # Downstream processing depends on the fact that evaluation data for a given # user is grouped within a batch. if is_training: index_destinations = np.random.permutation(num_pts) else: index_destinations = np.arange(num_pts) start_ind = 0 for data_segment in data_generator: n_in_segment = data_segment[0].shape[0] dest = index_destinations[start_ind:start_ind + n_in_segment] start_ind += n_in_segment for i in range(3): data[i][dest] = data_segment[i] assert np.sum(data[0] == -1) == num_padding if is_training: if num_padding: # In order to have a full batch, randomly include points from earlier in # the batch. pad_sample_indices = np.random.randint( low=0, high=num_pts, size=(num_padding,)) dest = np.arange(start=start_ind, stop=start_ind + num_padding) start_ind += num_padding for i in range(3): data[i][dest] = data[i][pad_sample_indices] else: # For Evaluation, padding is all zeros. The evaluation input_fn knows how # to interpret and discard the zero padded entries. data[0][num_pts:] = 0 # Check that no points were overlooked. assert not np.sum(data[0] == -1) batches_per_file = np.ceil(num_pts_with_padding / batch_size / num_readers) current_file_id = -1 current_batch_id = -1 batches_by_file = [[] for _ in range(num_readers)] while True: current_batch_id += 1 if (current_batch_id % batches_per_file) == 0: current_file_id += 1 start_ind = current_batch_id * batch_size end_ind = start_ind + batch_size if end_ind > num_pts_with_padding: if start_ind != num_pts_with_padding: raise ValueError("Batch padding does not line up") break batches_by_file[current_file_id].append(current_batch_id) if is_training: # Empirically it is observed that placing the batch with repeated values at # the start rather than the end improves convergence. batches_by_file[0][0], batches_by_file[-1][-1] = \ batches_by_file[-1][-1], batches_by_file[0][0] if is_training: template = rconst.TRAIN_RECORD_TEMPLATE record_dir = os.path.join(cache_paths.train_epoch_dir, get_cycle_folder_name(train_cycle)) tf.gfile.MakeDirs(record_dir) else: template = rconst.EVAL_RECORD_TEMPLATE record_dir = cache_paths.eval_data_subdir batch_count = 0 for i in range(num_readers): fpath = os.path.join(record_dir, template.format(i)) log_msg("Writing {}".format(fpath)) with tf.python_io.TFRecordWriter(fpath) as writer: for j in batches_by_file[i]: start_ind = j * batch_size end_ind = start_ind + batch_size record_kwargs = dict( users=data[0][start_ind:end_ind], items=data[1][start_ind:end_ind], ) if is_training: record_kwargs["labels"] = data[2][start_ind:end_ind] else: record_kwargs["dupe_mask"] = stat_utils.mask_duplicates( record_kwargs["items"].reshape(-1, num_neg + 1), axis=1).flatten().astype(np.int8) batch_bytes = _construct_record(**record_kwargs) writer.write(batch_bytes) batch_count += 1 # We write to a temp file then atomically rename it to the final file, because # writing directly to the final file can cause the main process to read a # partially written JSON file. ready_file_temp = os.path.join(record_dir, rconst.READY_FILE_TEMP) with tf.gfile.Open(ready_file_temp, "w") as f: json.dump({ "batch_size": batch_size, "batch_count": batch_count, }, f) ready_file = os.path.join(record_dir, rconst.READY_FILE) tf.gfile.Rename(ready_file_temp, ready_file) if is_training: log_msg("Cycle {} complete. Total time: {:.1f} seconds" .format(train_cycle, timeit.default_timer() - st)) else: log_msg("Eval construction complete. Total time: {:.1f} seconds" .format(timeit.default_timer() - st)) def _generation_loop(num_workers, # type: int cache_paths, # type: rconst.Paths num_readers, # type: int num_neg, # type: int num_train_positives, # type: int num_items, # type: int num_users, # type: int epochs_per_cycle, # type: int train_batch_size, # type: int eval_batch_size, # type: int deterministic, # type: bool match_mlperf # type: bool ): # type: (...) -> None """Primary run loop for data file generation.""" log_msg("Signaling that I am alive.") with tf.gfile.Open(cache_paths.subproc_alive, "w") as f: f.write("Generation subproc has started.") @atexit.register def remove_alive_file(): try: tf.gfile.Remove(cache_paths.subproc_alive) except tf.errors.NotFoundError: return # Main thread has already deleted the entire cache dir. log_msg("Entering generation loop.") tf.gfile.MakeDirs(cache_paths.train_epoch_dir) tf.gfile.MakeDirs(cache_paths.eval_data_subdir) training_shards = [os.path.join(cache_paths.train_shard_subdir, i) for i in tf.gfile.ListDirectory(cache_paths.train_shard_subdir)] shared_kwargs = dict( num_workers=multiprocessing.cpu_count(), cache_paths=cache_paths, num_readers=num_readers, num_items=num_items, training_shards=training_shards, deterministic=deterministic, match_mlperf=match_mlperf ) # Training blocks on the creation of the first epoch, so the num_workers # limit is not respected for this invocation train_cycle = 0 _construct_records( is_training=True, train_cycle=train_cycle, num_neg=num_neg, num_positives=num_train_positives, epochs_per_cycle=epochs_per_cycle, batch_size=train_batch_size, **shared_kwargs) # Construct evaluation set. shared_kwargs["num_workers"] = num_workers _construct_records( is_training=False, train_cycle=None, num_neg=rconst.NUM_EVAL_NEGATIVES, num_positives=num_users, epochs_per_cycle=1, batch_size=eval_batch_size, **shared_kwargs) wait_count = 0 start_time = time.time() while True: ready_epochs = tf.gfile.ListDirectory(cache_paths.train_epoch_dir) if len(ready_epochs) >= rconst.CYCLES_TO_BUFFER: wait_count += 1 sleep_time = max([0, wait_count * 5 - (time.time() - start_time)]) time.sleep(sleep_time) if (wait_count % 10) == 0: log_msg("Waited {} times for data to be consumed." .format(wait_count)) if time.time() - start_time > rconst.TIMEOUT_SECONDS: log_msg("Waited more than {} seconds. Concluding that this " "process is orphaned and exiting gracefully." .format(rconst.TIMEOUT_SECONDS)) sys.exit() continue train_cycle += 1 _construct_records( is_training=True, train_cycle=train_cycle, num_neg=num_neg, num_positives=num_train_positives, epochs_per_cycle=epochs_per_cycle, batch_size=train_batch_size, **shared_kwargs) wait_count = 0 start_time = time.time() gc.collect() def _parse_flagfile(flagfile): """Fill flags with flagfile written by the main process.""" tf.logging.info("Waiting for flagfile to appear at {}..." .format(flagfile)) start_time = time.time() while not tf.gfile.Exists(flagfile): if time.time() - start_time > rconst.TIMEOUT_SECONDS: log_msg("Waited more than {} seconds. Concluding that this " "process is orphaned and exiting gracefully." .format(rconst.TIMEOUT_SECONDS)) sys.exit() time.sleep(1) tf.logging.info("flagfile found.") # `flags` module opens `flagfile` with `open`, which does not work on # google cloud storage etc. _, flagfile_temp = tempfile.mkstemp() tf.gfile.Copy(flagfile, flagfile_temp, overwrite=True) flags.FLAGS([__file__, "--flagfile", flagfile_temp]) tf.gfile.Remove(flagfile_temp) def main(_): global _log_file cache_paths = rconst.Paths( data_dir=flags.FLAGS.data_dir, cache_id=flags.FLAGS.cache_id) flagfile = os.path.join(cache_paths.cache_root, rconst.FLAGFILE) _parse_flagfile(flagfile) redirect_logs = flags.FLAGS.redirect_logs log_file_name = "data_gen_proc_{}.log".format(cache_paths.cache_id) log_path = os.path.join(cache_paths.data_dir, log_file_name) if log_path.startswith("gs://") and redirect_logs: fallback_log_file = os.path.join(tempfile.gettempdir(), log_file_name) print("Unable to log to {}. Falling back to {}" .format(log_path, fallback_log_file)) log_path = fallback_log_file # This server is generally run in a subprocess. if redirect_logs: print("Redirecting output of data_async_generation.py process to {}" .format(log_path)) _log_file = open(log_path, "wt") # Note: not tf.gfile.Open(). try: log_msg("sys.argv: {}".format(" ".join(sys.argv))) if flags.FLAGS.seed is not None: np.random.seed(flags.FLAGS.seed) _generation_loop( num_workers=flags.FLAGS.num_workers, cache_paths=cache_paths, num_readers=flags.FLAGS.num_readers, num_neg=flags.FLAGS.num_neg, num_train_positives=flags.FLAGS.num_train_positives, num_items=flags.FLAGS.num_items, num_users=flags.FLAGS.num_users, epochs_per_cycle=flags.FLAGS.epochs_per_cycle, train_batch_size=flags.FLAGS.train_batch_size, eval_batch_size=flags.FLAGS.eval_batch_size, deterministic=flags.FLAGS.seed is not None, match_mlperf=flags.FLAGS.ml_perf, ) except KeyboardInterrupt: log_msg("KeyboardInterrupt registered.") except: traceback.print_exc(file=_log_file) raise finally: log_msg("Shutting down generation subprocess.") sys.stdout.flush() sys.stderr.flush() if redirect_logs: _log_file.close() def define_flags(): """Construct flags for the server.""" flags.DEFINE_integer(name="num_workers", default=multiprocessing.cpu_count(), help="Size of the negative generation worker pool.") flags.DEFINE_string(name="data_dir", default=None, help="The data root. (used to construct cache paths.)") flags.DEFINE_string(name="cache_id", default=None, help="The cache_id generated in the main process.") flags.DEFINE_integer(name="num_readers", default=4, help="Number of reader datasets in training. This sets" "how the epoch files are sharded.") flags.DEFINE_integer(name="num_neg", default=None, help="The Number of negative instances to pair with a " "positive instance.") flags.DEFINE_integer(name="num_train_positives", default=None, help="The number of positive training examples.") flags.DEFINE_integer(name="num_items", default=None, help="Number of items from which to select negatives.") flags.DEFINE_integer(name="num_users", default=None, help="The number of unique users. Used for evaluation.") flags.DEFINE_integer(name="epochs_per_cycle", default=1, help="The number of epochs of training data to produce" "at a time.") flags.DEFINE_integer(name="train_batch_size", default=None, help="The batch size with which training TFRecords will " "be chunked.") flags.DEFINE_integer(name="eval_batch_size", default=None, help="The batch size with which evaluation TFRecords " "will be chunked.") flags.DEFINE_boolean(name="redirect_logs", default=False, help="Catch logs and write them to a file. " "(Useful if this is run as a subprocess)") flags.DEFINE_boolean(name="use_tf_logging", default=False, help="Use tf.logging instead of log file.") flags.DEFINE_integer(name="seed", default=None, help="NumPy random seed to set at startup. If not " "specified, a seed will not be set.") flags.DEFINE_boolean(name="ml_perf", default=None, help="Match MLPerf. See ncf_main.py for details.") flags.mark_flags_as_required(["data_dir", "cache_id"]) if __name__ == "__main__": define_flags() absl_app.run(main)