# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Central location for NCF specific values.""" import os import time # ============================================================================== # == Main Thread Data Processing =============================================== # ============================================================================== class Paths(object): """Container for various path information used while training NCF.""" def __init__(self, data_dir, cache_id=None): self.cache_id = cache_id or int(time.time()) self.data_dir = data_dir self.cache_root = os.path.join( self.data_dir, "{}_ncf_recommendation_cache".format(self.cache_id)) self.train_shard_subdir = os.path.join(self.cache_root, "raw_training_shards") self.train_shard_template = os.path.join(self.train_shard_subdir, "positive_shard_{}.pickle") self.train_epoch_dir = os.path.join(self.cache_root, "training_epochs") self.eval_data_subdir = os.path.join(self.cache_root, "eval_data") self.subproc_alive = os.path.join(self.cache_root, "subproc.alive") APPROX_PTS_PER_TRAIN_SHARD = 128000 # Keys for data shards TRAIN_KEY = "train" EVAL_KEY = "eval" # In both datasets, each user has at least 20 ratings. MIN_NUM_RATINGS = 20 # The number of negative examples attached with a positive example # when performing evaluation. NUM_EVAL_NEGATIVES = 999 # keys for evaluation metrics TOP_K = 10 # Top-k list for evaluation HR_KEY = "HR" NDCG_KEY = "NDCG" DUPLICATE_MASK = "duplicate_mask" # ============================================================================== # == Subprocess Data Generation ================================================ # ============================================================================== CYCLES_TO_BUFFER = 3 # The number of train cycles worth of data to "run ahead" # of the main training loop. FLAGFILE_TEMP = "flagfile.temp" FLAGFILE = "flagfile" READY_FILE_TEMP = "ready.json.temp" READY_FILE = "ready.json" TRAIN_RECORD_TEMPLATE = "train_{}.tfrecords" EVAL_RECORD_TEMPLATE = "eval_{}.tfrecords" TIMEOUT_SECONDS = 3600 * 2 # If the train loop goes more than two hours without # consuming an epoch of data, this is a good # indicator that the main thread is dead and the # subprocess is orphaned.