# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for running models in a distributed setting.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import random import string import tensorflow as tf _COLLECTIVE_COMMUNICATION_OPTIONS = { None: tf.distribute.experimental.CollectiveCommunication.AUTO, "ring": tf.distribute.experimental.CollectiveCommunication.RING, "nccl": tf.distribute.experimental.CollectiveCommunication.NCCL } def get_distribution_strategy(distribution_strategy="default", num_gpus=0, num_workers=1, all_reduce_alg=None): """Return a DistributionStrategy for running the model. Args: distribution_strategy: a string specify which distribution strategy to use. Accepted values are 'off', 'default', 'one_device', 'mirrored', 'parameter_server', 'multi_worker_mirrored', case insensitive. 'off' means not to use Distribution Strategy; 'default' means to choose from `MirroredStrategy`, `MultiWorkerMirroredStrategy`, or `OneDeviceStrategy` according to the number of GPUs and number of workers. num_gpus: Number of GPUs to run this model. num_workers: Number of workers to run this model. all_reduce_alg: Optional. Specify which algorithm to use when performing all-reduce. See tf.contrib.distribute.AllReduceCrossDeviceOps for available algorithms when used with `mirrored`, and tf.distribute.experimental.CollectiveCommunication when used with `multi_worker_mirrored`. If None, DistributionStrategy will choose based on device topology. Returns: tf.distribute.DistibutionStrategy object. Raises: ValueError: if `distribution_strategy` is 'off' or 'one_device' and `num_gpus` is larger than 1; or `num_gpus` is negative. """ if num_gpus < 0: raise ValueError("`num_gpus` can not be negative.") distribution_strategy = distribution_strategy.lower() if distribution_strategy == "off": if num_gpus > 1 or num_workers > 1: raise ValueError( "When {} GPUs and {} workers are specified, distribution_strategy " "flag cannot be set to 'off'.".format(num_gpus, num_workers)) return None if distribution_strategy == "multi_worker_mirrored" or num_workers > 1: if all_reduce_alg not in _COLLECTIVE_COMMUNICATION_OPTIONS: raise ValueError( "When used with `multi_worker_mirrored`, valid values for " "all_reduce_alg are [`ring`, `nccl`]. Supplied value: {}".format( all_reduce_alg)) return tf.distribute.experimental.MultiWorkerMirroredStrategy( communication=_COLLECTIVE_COMMUNICATION_OPTIONS[all_reduce_alg]) if (distribution_strategy == "one_device" or (distribution_strategy == "default" and num_gpus <= 1)): if num_gpus == 0: return tf.distribute.OneDeviceStrategy("device:CPU:0") else: if num_gpus > 1: raise ValueError("`OneDeviceStrategy` can not be used for more than " "one device.") return tf.distribute.OneDeviceStrategy("device:GPU:0") if distribution_strategy in ("mirrored", "default"): if num_gpus == 0: assert distribution_strategy == "mirrored" devices = ["device:CPU:0"] else: devices = ["device:GPU:%d" % i for i in range(num_gpus)] if all_reduce_alg: return tf.distribute.MirroredStrategy( devices=devices, cross_device_ops=tf.contrib.distribute.AllReduceCrossDeviceOps( all_reduce_alg, num_packs=2)) else: return tf.distribute.MirroredStrategy(devices=devices) if distribution_strategy == "parameter_server": return tf.distribute.experimental.ParameterServerStrategy() raise ValueError( "Unrecognized Distribution Strategy: %r" % distribution_strategy) def per_device_batch_size(batch_size, num_gpus): """For multi-gpu, batch-size must be a multiple of the number of GPUs. Note that distribution strategy handles this automatically when used with Keras. For using with Estimator, we need to get per GPU batch. Args: batch_size: Global batch size to be divided among devices. This should be equal to num_gpus times the single-GPU batch_size for multi-gpu training. num_gpus: How many GPUs are used with DistributionStrategies. Returns: Batch size per device. Raises: ValueError: if batch_size is not divisible by number of devices """ if num_gpus <= 1: return batch_size remainder = batch_size % num_gpus if remainder: err = ('When running with multiple GPUs, batch size ' 'must be a multiple of the number of available GPUs. Found {} ' 'GPUs with a batch size of {}; try --batch_size={} instead.' ).format(num_gpus, batch_size, batch_size - remainder) raise ValueError(err) return int(batch_size / num_gpus) # The `SyntheticDataset` is a temporary solution for generating synthetic data # directly on devices. It is only useful for Keras with Distribution # Strategies. We will have better support in `tf.data` or Distribution Strategy # later. class SyntheticDataset(object): """A dataset that generates synthetic data on each device.""" def __init__(self, dataset, split_by=1): self._input_data = {} # dataset.take(1) doesn't have GPU kernel. with tf.device('device:CPU:0'): tensor = tf.data.experimental.get_single_element(dataset.take(1)) flat_tensor = tf.nest.flatten(tensor) variable_data = [] self._initializers = [] for t in flat_tensor: rebatched_t = tf.split(t, num_or_size_splits=split_by, axis=0)[0] assert rebatched_t.shape.is_fully_defined(), rebatched_t.shape v = tf.compat.v1.get_local_variable(self.random_name(), initializer=rebatched_t) variable_data.append(v) self._initializers.append(v.initializer) self._input_data = tf.nest.pack_sequence_as(tensor, variable_data) def get_next(self): return self._input_data def initialize(self): if tf.executing_eagerly(): return tf.no_op() else: return self._initializers def random_name(self, size=10, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def _monkey_patch_dataset_method(strategy): """Monkey-patch `strategy`'s `make_dataset_iterator` method.""" def make_dataset_iterator(self, dataset): tf.compat.v1.logging.info('Using pure synthetic data.') with self.scope(): if self.extended._global_batch_size: # pylint: disable=protected-access return SyntheticDataset(dataset, self.num_replicas_in_sync) else: return SyntheticDataset(dataset) strategy.org_make_dataset_iterator = strategy.make_dataset_iterator strategy.make_dataset_iterator = make_dataset_iterator def _undo_monkey_patch_dataset_method(strategy): if hasattr(strategy, 'org_make_dataset_iterator'): strategy.make_dataset_iterator = strategy.org_make_dataset_iterator def set_up_synthetic_data(): _monkey_patch_dataset_method(tf.distribute.MirroredStrategy) # TODO(tobyboyd): Remove when contrib.distribute is all in core. if hasattr(tf, 'contrib'): _monkey_patch_dataset_method(tf.contrib.distribute.MirroredStrategy) _monkey_patch_dataset_method(tf.contrib.distribute.OneDeviceStrategy) else: print('Contrib missing: Skip monkey patch tf.contrib.distribute.*') def undo_set_up_synthetic_data(): _undo_monkey_patch_dataset_method(tf.distribute.MirroredStrategy) # TODO(tobyboyd): Remove when contrib.distribute is all in core. if hasattr(tf, 'contrib'): _undo_monkey_patch_dataset_method(tf.contrib.distribute.MirroredStrategy) _undo_monkey_patch_dataset_method(tf.contrib.distribute.OneDeviceStrategy) else: print('Contrib missing: Skip remove monkey patch tf.contrib.distribute.*') def configure_cluster(worker_hosts=None, task_index=-1): """Set multi-worker cluster spec in TF_CONFIG environment variable. Args: worker_hosts: comma-separated list of worker ip:port pairs. Returns: Number of workers in the cluster. """ tf_config = json.loads(os.environ.get('TF_CONFIG', '{}')) if tf_config: num_workers = len(tf_config['cluster']['worker']) elif worker_hosts: workers = worker_hosts.split(',') num_workers = len(workers) if num_workers > 1 and task_index < 0: raise ValueError('Must specify task_index when number of workers > 1') task_index = 0 if num_workers == 1 else task_index os.environ['TF_CONFIG'] = json.dumps({ 'cluster': { 'worker': workers }, 'task': {'type': 'worker', 'index': task_index} }) else: num_workers = 1 return num_workers