# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== #!/bin/bash # # This script performs the following operations: # 1. Downloads the Imagenet dataset. # 2. Trains image compression model on patches from Imagenet. # 3. Evaluates the models and writes sample images to disk. # # Usage: # cd models/research/gan/image_compression # ./launch_jobs.sh ${weight_factor} ${git_repo} set -e # Weight of the adversarial loss. weight_factor=$1 if [[ "$weight_factor" == "" ]]; then echo "'weight_factor' must not be empty." exit fi # Location of the git repository. git_repo=$2 if [[ "$git_repo" == "" ]]; then echo "'git_repo' must not be empty." exit fi # Base name for where the checkpoint and logs will be saved to. TRAIN_DIR=/tmp/compression-model # Base name for where the evaluation images will be saved to. EVAL_DIR=/tmp/compression-model/eval # Where the dataset is saved to. DATASET_DIR=/tmp/imagenet-data export PYTHONPATH=$PYTHONPATH:$git_repo:$git_repo/research:$git_repo/research/slim:$git_repo/research/slim/nets # A helper function for printing pretty output. Banner () { local text=$1 local green='\033[0;32m' local nc='\033[0m' # No color. echo -e "${green}${text}${nc}" } # Download the dataset. bazel build "${git_repo}/research/slim:download_and_convert_imagenet" "./bazel-bin/download_and_convert_imagenet" ${DATASET_DIR} # Run the compression model. NUM_STEPS=10000 MODEL_TRAIN_DIR="${TRAIN_DIR}/wt${weight_factor}" Banner "Starting training an image compression model for ${NUM_STEPS} steps..." python "${git_repo}/research/gan/image_compression/train.py" \ --train_log_dir=${MODEL_TRAIN_DIR} \ --dataset_dir=${DATASET_DIR} \ --max_number_of_steps=${NUM_STEPS} \ --weight_factor=${weight_factor} \ --alsologtostderr Banner "Finished training image compression model ${NUM_STEPS} steps." # Run evaluation. MODEL_EVAL_DIR="${TRAIN_DIR}/eval/wt${weight_factor}" Banner "Starting evaluation of image compression model..." python "${git_repo}/research/gan/image_compression/eval.py" \ --checkpoint_dir=${MODEL_TRAIN_DIR} \ --eval_dir=${MODEL_EVAL_DIR} \ --dataset_dir=${DATASET_DIR} \ --max_number_of_evaluation=1 Banner "Finished evaluation. See ${MODEL_EVAL_DIR} for output images."