Unverified Commit fe748d4a authored by pkulzc's avatar pkulzc Committed by GitHub
Browse files

Object detection changes: (#7208)

257914648  by lzc:

    Internal changes

--
257525973  by Zhichao Lu:

    Fixes bug that silently prevents checkpoints from loading when training w/ eager + functions. Also sets up scripts to run training.

--
257296614  by Zhichao Lu:

    Adding detection_features to model outputs

--
257234565  by Zhichao Lu:

    Fix wrong order of `classes_with_max_scores` in class-agnostic NMS caused by
    sorting in partitioned-NMS.

--
257232002  by ronnyvotel:

    Supporting `filter_nonoverlapping` option in np_box_list_ops.clip_to_window().

--
257198282  by Zhichao Lu:

    Adding the focal loss and l1 loss from the Objects as Points paper.

--
257089535  by Zhichao Lu:

    Create Keras based ssd + resnetv1 + fpn.

--
257087407  by Zhichao Lu:

    Make object_detection/data_decoders Python3-compatible.

--
257004582  by Zhichao Lu:

    Updates _decode_raw_data_into_masks_and_boxes to the latest binary masks-to-string encoding format.

--
257002124  by Zhichao Lu:

    Make object_detection/utils Python3-compatible, except json_utils.

    The patching trick used in json_utils is not going to work in Python 3.

--
256795056  by lzc:

    Add a detection_anchor_indices field to detection outputs.

--
256477542  by Zhichao Lu:

    Make object_detection/core Python3-compatible.

--
256387593  by Zhichao Lu:

    Edit class_id_function_approximations builder to skip class ids not present in label map.

--
256259039  by Zhichao Lu:

    Move NMS to TPU for FasterRCNN.

--
256071360  by rathodv:

    When multiclass_scores is empty, add one-hot encoding of groundtruth_classes as multiclass scores so that data_augmentation ops that expect the presence of multiclass_scores don't have to individually handle this case.

    Also copy input tensor_dict to out_tensor_dict first to avoid inplace modification.

--
256023645  by Zhichao Lu:

    Adds the first WIP iterations of TensorFlow v2 eager + functions style custom training & evaluation loops.

--
255980623  by Zhichao Lu:

    Adds a new data augmentation operation "remap_labels" which remaps a set of labels to a new label.

--
255753259  by Zhichao Lu:

    Announcement of the released evaluation tutorial for Open Images Challenge
    2019.

--
255698776  by lzc:

    Fix rewrite_nn_resize_op function which was broken by tf forward compatibility movement.

--
255623150  by Zhichao Lu:

    Add Keras-based ResnetV1 models.

--
255504992  by Zhichao Lu:

    Fixing the typo in specifying label expansion for ground truth segmentation
    file.

--
255470768  by Zhichao Lu:

    1. Fixing Python bug with parsed arguments.
    2. Adding capability to parse relevant columns from CSV header.
    3. Fixing bug with duplicated labels expansion.

--
255462432  by Zhichao Lu:

    Adds a new data augmentation operation "drop_label_probabilistically" which drops a given label with the given probability. This supports experiments on training in the presence of label noise.

--
255441632  by rathodv:

    Fallback on groundtruth classes when multiclass_scores tensor is empty.

--
255434899  by Zhichao Lu:

    Ensuring evaluation binary can run even with big files by synchronizing
    processing of ground truth and predictions: in this way, ground truth is not stored but immediatly
    used for evaluation. In case gt of object masks, this allows to run
    evaluations on relatively large sets.

--
255337855  by lzc:

    Internal change.

--
255308908  by Zhichao Lu:

    Add comment to clarify usage of calibration parameters proto.

--
255266371  by Zhichao Lu:

    Ensuring correct processing of the case, when no groundtruth masks are provided
    for an image.

--
255236648  by Zhichao Lu:

    Refactor model_builder in faster_rcnn.py to a util_map, so that it's possible to be overwritten.

--
255093285  by Zhichao Lu:

    Updating capability to subsample data during evaluation

--
255081222  by rathodv:

    Convert groundtruth masks to be of type float32 before its used in the loss function.

    When using mixed precision training, masks are represented using bfloat16 tensors in the input pipeline for performance reasons. We need to convert them to float32 before using it in the loss function.

--
254788436  by Zhichao Lu:

    Add forward_compatible to non_max_suppression_with_scores to make it is
    compatible with older tensorflow version.

--
254442362  by Zhichao Lu:

    Add num_layer field to ssd feature extractor proto.

--
253911582  by jonathanhuang:

    Plumbs Soft-NMS options (using the new tf.image.non_max_suppression_with_scores op) into the TF Object Detection API.  It adds a `soft_nms_sigma` field to the postprocessing proto file and plumbs this through to both the multiclass and class_agnostic versions of NMS. Note that there is no effect on behavior of NMS when soft_nms_sigma=0 (which it is set to by default).

    See also "Soft-NMS -- Improving Object Detection With One Line of Code" by Bodla et al (https://arxiv.org/abs/1704.04503)

--
253703949  by Zhichao Lu:

    Internal test fixes.

--
253151266  by Zhichao Lu:

    Fix the op type check for FusedBatchNorm, given that we introduced
    FusedBatchNormV3 in a previous change.

--
252718956  by Zhichao Lu:

    Customize activation function to enable relu6 instead of relu for saliency
    prediction model seastarization

--
252158593  by Zhichao Lu:

    Make object_detection/core Python3-compatible.

--
252150717  by Zhichao Lu:

    Make object_detection/core Python3-compatible.

--
251967048  by Zhichao Lu:

    Make GraphRewriter proto extensible.

--
251950039  by Zhichao Lu:

    Remove experimental_export_device_assignment from TPUEstimator.export_savedmodel(), so as to remove rewrite_for_inference().

    As a replacement, export_savedmodel() V2 API supports device_assignment where user call tpu.rewrite in model_fn and pass in device_assigment there.

--
251890697  by rathodv:

    Updated docstring to include new output nodes.

--
251662894  by Zhichao Lu:

    Add autoaugment augmentation option to objection detection api codebase. This
    is an available option in preprocessor.py.

    The intended usage of autoaugment is to be done along with random flipping and
    cropping for best results.

--
251532908  by Zhichao Lu:

    Add TrainingDataType enum to track whether class-specific or agnostic data was used to fit the calibration function.

    This is useful, since classes with few observations may require a calibration function fit on all classes.

--
251511339  by Zhichao Lu:

    Add multiclass isotonic regression to the calibration builder.

--
251317769  by pengchong:

    Internal Change.

--
250729989  by Zhichao Lu:

    Fixing bug in gt statistics count in case of mask and box annotations.

--
250729627  by Zhichao Lu:

    Label expansion for segmentation.

--
250724905  by Zhichao Lu:

    Fix use_depthwise in fpn and test it with fpnlite on ssd + mobilenet v2.

--
250670379  by Zhichao Lu:

    Internal change

250630364  by lzc:

    Fix detection_model_zoo footnotes

--
250560654  by Zhichao Lu:

    Fix static shape issue in matmul_crop_and_resize.

--
250534857  by Zhichao Lu:

    Edit class agnostic calibration function docstring to more accurately describe the function's outputs.

--
250533277  by Zhichao Lu:

    Edit the multiclass messages to use class ids instead of labels.

--

PiperOrigin-RevId: 257914648
parent 81123ebf
......@@ -15,6 +15,10 @@
"""Tests for object_detection.utils.np_box_mask_list_test."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
......
......@@ -19,6 +19,11 @@ Example box operations that are supported:
* Areas: compute bounding box areas
* IOU: pairwise intersection-over-union scores
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
......
......@@ -15,6 +15,10 @@
"""Tests for object_detection.np_box_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
......
......@@ -19,6 +19,11 @@ Example mask operations that are supported:
* Areas: compute mask areas
* IOU: pairwise intersection-over-union scores
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
EPSILON = 1e-7
......
......@@ -15,6 +15,10 @@
"""Tests for object_detection.np_mask_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
......
......@@ -27,12 +27,19 @@ It supports the following operations:
Note: This module operates on numpy boxes and box lists.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import ABCMeta
from abc import abstractmethod
import collections
import logging
import unicodedata
import numpy as np
import six
from six.moves import range
from six.moves import zip
import tensorflow as tf
from object_detection.core import standard_fields
......@@ -41,7 +48,7 @@ from object_detection.utils import metrics
from object_detection.utils import per_image_evaluation
class DetectionEvaluator(object):
class DetectionEvaluator(six.with_metaclass(ABCMeta, object)):
"""Interface for object detection evalution classes.
Example usage of the Evaluator:
......@@ -58,7 +65,6 @@ class DetectionEvaluator(object):
metrics_dict = evaluator.evaluate()
"""
__metaclass__ = ABCMeta
def __init__(self, categories):
"""Constructor.
......@@ -96,8 +102,8 @@ class DetectionEvaluator(object):
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary of groundtruth numpy arrays required
for evaluations.
groundtruth_dict: A dictionary of groundtruth numpy arrays required for
evaluations.
"""
pass
......@@ -107,8 +113,8 @@ class DetectionEvaluator(object):
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary of detection numpy arrays required
for evaluation.
detections_dict: A dictionary of detection numpy arrays required for
evaluation.
"""
pass
......@@ -164,8 +170,8 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
boxes to detection boxes.
recall_lower_bound: lower bound of recall operating area.
recall_upper_bound: upper bound of recall operating area.
evaluate_corlocs: (optional) boolean which determines if corloc scores
are to be returned or not.
evaluate_corlocs: (optional) boolean which determines if corloc scores are
to be returned or not.
evaluate_precision_recall: (optional) boolean which determines if
precision and recall values are to be returned or not.
metric_prefix: (optional) string prefix for metric name; if None, no
......@@ -173,8 +179,8 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
use_weighted_mean_ap: (optional) boolean which determines if the mean
average precision is computed directly from the scores and tp_fp_labels
of all classes.
evaluate_masks: If False, evaluation will be performed based on boxes.
If True, mask evaluation will be performed instead.
evaluate_masks: If False, evaluation will be performed based on boxes. If
True, mask evaluation will be performed instead.
group_of_weight: Weight of group-of boxes.If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0, then
if at least one detection falls within a group-of box with
......@@ -245,18 +251,20 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
if idx + self._label_id_offset in category_index:
category_name = category_index[idx + self._label_id_offset]['name']
try:
category_name = unicode(category_name, 'utf-8')
category_name = six.text_type(category_name, 'utf-8')
except TypeError:
pass
category_name = unicodedata.normalize('NFKD', category_name).encode(
'ascii', 'ignore')
category_name = unicodedata.normalize('NFKD', category_name)
if six.PY2:
category_name = category_name.encode('ascii', 'ignore')
self._metric_names.append(
self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
if self._evaluate_corlocs:
self._metric_names.append(
self._metric_prefix + 'PerformanceByCategory/CorLoc@{}IOU/{}'
.format(self._matching_iou_threshold, category_name))
self._metric_prefix +
'PerformanceByCategory/CorLoc@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
......@@ -270,10 +278,10 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
of shape [num_boxes] containing 1-indexed groundtruth classes for the
boxes.
standard_fields.InputDataFields.groundtruth_difficult: Optional length
M numpy boolean array denoting whether a ground truth box is a
difficult instance or not. This field is optional to support the case
that no boxes are difficult.
standard_fields.InputDataFields.groundtruth_difficult: Optional length M
numpy boolean array denoting whether a ground truth box is a difficult
instance or not. This field is optional to support the case that no
boxes are difficult.
standard_fields.InputDataFields.groundtruth_instance_masks: Optional
numpy array of shape [num_boxes, height, width] with values in {0, 1}.
......@@ -290,8 +298,8 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
# If the key is not present in the groundtruth_dict or the array is empty
# (unless there are no annotations for the groundtruth on this image)
# use values from the dictionary or insert None otherwise.
if (standard_fields.InputDataFields.groundtruth_difficult in
groundtruth_dict.keys() and
if (standard_fields.InputDataFields.groundtruth_difficult in six.viewkeys(
groundtruth_dict) and
(groundtruth_dict[standard_fields.InputDataFields.groundtruth_difficult]
.size or not groundtruth_classes.size)):
groundtruth_difficult = groundtruth_dict[
......@@ -299,7 +307,7 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
else:
groundtruth_difficult = None
if not len(self._image_ids) % 1000:
logging.warn(
logging.warning(
'image %s does not have groundtruth difficult flag specified',
image_id)
groundtruth_masks = None
......@@ -332,9 +340,9 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
standard_fields.DetectionResultFields.detection_classes: integer numpy
array of shape [num_boxes] containing 1-indexed detection classes for
the boxes.
standard_fields.DetectionResultFields.detection_masks: uint8 numpy
array of shape [num_boxes, height, width] containing `num_boxes` masks
of values ranging between 0 and 1.
standard_fields.DetectionResultFields.detection_masks: uint8 numpy array
of shape [num_boxes, height, width] containing `num_boxes` masks of
values ranging between 0 and 1.
Raises:
ValueError: If detection masks are not in detections dictionary.
......@@ -383,11 +391,12 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
if idx + self._label_id_offset in category_index:
category_name = category_index[idx + self._label_id_offset]['name']
try:
category_name = unicode(category_name, 'utf-8')
category_name = six.text_type(category_name, 'utf-8')
except TypeError:
pass
category_name = unicodedata.normalize(
'NFKD', category_name).encode('ascii', 'ignore')
category_name = unicodedata.normalize('NFKD', category_name)
if six.PY2:
category_name = category_name.encode('ascii', 'ignore')
display_name = (
self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
......@@ -409,8 +418,9 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
# Optionally add CorLoc metrics.classes
if self._evaluate_corlocs:
display_name = (
self._metric_prefix + 'PerformanceByCategory/CorLoc@{}IOU/{}'
.format(self._matching_iou_threshold, category_name))
self._metric_prefix +
'PerformanceByCategory/CorLoc@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
pascal_metrics[display_name] = per_class_corloc[idx]
return pascal_metrics
......@@ -446,7 +456,7 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
if key in self._expected_keys:
eval_dict_filtered[key] = value
eval_dict_keys = eval_dict_filtered.keys()
eval_dict_keys = list(eval_dict_filtered.keys())
def update_op(image_id, *eval_dict_batched_as_list):
"""Update operation that adds batch of images to ObjectDetectionEvaluator.
......@@ -468,7 +478,7 @@ class ObjectDetectionEvaluator(DetectionEvaluator):
self.add_single_detected_image_info(image_id, single_example_dict)
args = [eval_dict_filtered[standard_fields.InputDataFields.key]]
args.extend(eval_dict_filtered.values())
args.extend(six.itervalues(eval_dict_filtered))
update_op = tf.py_func(update_op, args, [])
def first_value_func():
......@@ -651,8 +661,8 @@ class OpenImagesDetectionEvaluator(ObjectDetectionEvaluator):
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
of shape [num_boxes] containing 1-indexed groundtruth classes for the
boxes.
standard_fields.InputDataFields.groundtruth_group_of: Optional length
M numpy boolean array denoting whether a groundtruth box contains a
standard_fields.InputDataFields.groundtruth_group_of: Optional length M
numpy boolean array denoting whether a groundtruth box contains a
group of instances.
Raises:
......@@ -667,8 +677,8 @@ class OpenImagesDetectionEvaluator(ObjectDetectionEvaluator):
# If the key is not present in the groundtruth_dict or the array is empty
# (unless there are no annotations for the groundtruth on this image)
# use values from the dictionary or insert None otherwise.
if (standard_fields.InputDataFields.groundtruth_group_of in
groundtruth_dict.keys() and
if (standard_fields.InputDataFields.groundtruth_group_of in six.viewkeys(
groundtruth_dict) and
(groundtruth_dict[standard_fields.InputDataFields.groundtruth_group_of]
.size or not groundtruth_classes.size)):
groundtruth_group_of = groundtruth_dict[
......@@ -676,7 +686,7 @@ class OpenImagesDetectionEvaluator(ObjectDetectionEvaluator):
else:
groundtruth_group_of = None
if not len(self._image_ids) % 1000:
logging.warn(
logging.warning(
'image %s does not have groundtruth group_of flag specified',
image_id)
if self._evaluate_masks:
......@@ -741,18 +751,18 @@ class OpenImagesChallengeEvaluator(OpenImagesDetectionEvaluator):
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
group_of_weight: weight of a group-of box. If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0
(default for Open Images Detection Challenge), then if at least one
detection falls within a group-of box with matching_iou_threshold,
weight group_of_weight is added to true positives. Consequently, if no
detection falls within a group-of box, weight group_of_weight is added
to false negatives.
group_of_weight: Weight of group-of boxes. If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0, then
if at least one detection falls within a group-of box with
matching_iou_threshold, weight group_of_weight is added to true
positives. Consequently, if no detection falls within a group-of box,
weight group_of_weight is added to false negatives.
"""
if not evaluate_masks:
metrics_prefix = 'OpenImagesDetectionChallenge'
else:
metrics_prefix = 'OpenImagesInstanceSegmentationChallenge'
super(OpenImagesChallengeEvaluator, self).__init__(
categories,
matching_iou_threshold,
......@@ -779,8 +789,8 @@ class OpenImagesChallengeEvaluator(OpenImagesDetectionEvaluator):
boxes.
standard_fields.InputDataFields.groundtruth_image_classes: integer 1D
numpy array containing all classes for which labels are verified.
standard_fields.InputDataFields.groundtruth_group_of: Optional length
M numpy boolean array denoting whether a groundtruth box contains a
standard_fields.InputDataFields.groundtruth_group_of: Optional length M
numpy boolean array denoting whether a groundtruth box contains a
group of instances.
Raises:
......@@ -864,8 +874,7 @@ class OpenImagesDetectionChallengeEvaluator(OpenImagesChallengeEvaluator):
def __init__(self,
categories,
matching_iou_threshold=0.5,
evaluate_corlocs=False,
group_of_weight=1.0):
evaluate_corlocs=False):
"""Constructor.
Args:
......@@ -875,13 +884,6 @@ class OpenImagesDetectionChallengeEvaluator(OpenImagesChallengeEvaluator):
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
group_of_weight: weight of a group-of box. If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0
(default for Open Images Detection Challenge), then if at least one
detection falls within a group-of box with matching_iou_threshold,
weight group_of_weight is added to true positives. Consequently, if no
detection falls within a group-of box, weight group_of_weight is added
to false negatives.
"""
super(OpenImagesDetectionChallengeEvaluator, self).__init__(
categories=categories,
......@@ -898,8 +900,7 @@ class OpenImagesInstanceSegmentationChallengeEvaluator(
def __init__(self,
categories,
matching_iou_threshold=0.5,
evaluate_corlocs=False,
group_of_weight=1.0):
evaluate_corlocs=False):
"""Constructor.
Args:
......@@ -909,20 +910,13 @@ class OpenImagesInstanceSegmentationChallengeEvaluator(
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
group_of_weight: weight of a group-of box. If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0
(default for Open Images Detection Challenge), then if at least one
detection falls within a group-of box with matching_iou_threshold,
weight group_of_weight is added to true positives. Consequently, if no
detection falls within a group-of box, weight group_of_weight is added
to false negatives.
"""
super(OpenImagesInstanceSegmentationChallengeEvaluator, self).__init__(
categories=categories,
evaluate_masks=True,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
group_of_weight=1.0)
group_of_weight=0.0)
class ObjectDetectionEvaluation(object):
......@@ -943,8 +937,8 @@ class ObjectDetectionEvaluation(object):
Args:
num_groundtruth_classes: Number of ground-truth classes.
matching_iou_threshold: IOU threshold used for matching detected boxes
to ground-truth boxes.
matching_iou_threshold: IOU threshold used for matching detected boxes to
ground-truth boxes.
nms_iou_threshold: IOU threshold used for non-maximum suppression.
nms_max_output_boxes: Maximum number of boxes returned by non-maximum
suppression.
......@@ -960,8 +954,8 @@ class ObjectDetectionEvaluation(object):
matching_iou_threshold, weight group_of_weight is added to true
positives. Consequently, if no detection falls within a group-of box,
weight group_of_weight is added to false negatives.
per_image_eval_class: The class that contains functions for computing
per image metrics.
per_image_eval_class: The class that contains functions for computing per
image metrics.
Raises:
ValueError: if num_groundtruth_classes is smaller than 1.
......@@ -1019,23 +1013,23 @@ class ObjectDetectionEvaluation(object):
Args:
image_key: A unique string/integer identifier for the image.
groundtruth_boxes: float32 numpy array of shape [num_boxes, 4]
containing `num_boxes` groundtruth boxes of the format
[ymin, xmin, ymax, xmax] in absolute image coordinates.
groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing
`num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in
absolute image coordinates.
groundtruth_class_labels: integer numpy array of shape [num_boxes]
containing 0-indexed groundtruth classes for the boxes.
groundtruth_is_difficult_list: A length M numpy boolean array denoting
whether a ground truth box is a difficult instance or not. To support
the case that no boxes are difficult, it is by default set as None.
groundtruth_is_group_of_list: A length M numpy boolean array denoting
whether a ground truth box is a group-of box or not. To support
the case that no boxes are groups-of, it is by default set as None.
groundtruth_masks: uint8 numpy array of shape
[num_boxes, height, width] containing `num_boxes` groundtruth masks.
The mask values range from 0 to 1.
whether a ground truth box is a group-of box or not. To support the case
that no boxes are groups-of, it is by default set as None.
groundtruth_masks: uint8 numpy array of shape [num_boxes, height, width]
containing `num_boxes` groundtruth masks. The mask values range from 0
to 1.
"""
if image_key in self.groundtruth_boxes:
logging.warn(
logging.warning(
'image %s has already been added to the ground truth database.',
image_key)
return
......@@ -1051,31 +1045,42 @@ class ObjectDetectionEvaluation(object):
if groundtruth_is_group_of_list is None:
num_boxes = groundtruth_boxes.shape[0]
groundtruth_is_group_of_list = np.zeros(num_boxes, dtype=bool)
if groundtruth_masks is None:
num_boxes = groundtruth_boxes.shape[0]
mask_presence_indicator = np.zeros(num_boxes, dtype=bool)
else:
mask_presence_indicator = (np.sum(groundtruth_masks,
axis=(1, 2)) == 0).astype(dtype=bool)
self.groundtruth_is_group_of_list[
image_key] = groundtruth_is_group_of_list.astype(dtype=bool)
self._update_ground_truth_statistics(
groundtruth_class_labels,
groundtruth_is_difficult_list.astype(dtype=bool),
groundtruth_is_difficult_list.astype(dtype=bool)
| mask_presence_indicator, # ignore boxes without masks
groundtruth_is_group_of_list.astype(dtype=bool))
def add_single_detected_image_info(self, image_key, detected_boxes,
detected_scores, detected_class_labels,
def add_single_detected_image_info(self,
image_key,
detected_boxes,
detected_scores,
detected_class_labels,
detected_masks=None):
"""Adds detections for a single image to be used for evaluation.
Args:
image_key: A unique string/integer identifier for the image.
detected_boxes: float32 numpy array of shape [num_boxes, 4]
containing `num_boxes` detection boxes of the format
[ymin, xmin, ymax, xmax] in absolute image coordinates.
detected_boxes: float32 numpy array of shape [num_boxes, 4] containing
`num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in
absolute image coordinates.
detected_scores: float32 numpy array of shape [num_boxes] containing
detection scores for the boxes.
detected_class_labels: integer numpy array of shape [num_boxes] containing
0-indexed detection classes for the boxes.
detected_masks: np.uint8 numpy array of shape [num_boxes, height, width]
containing `num_boxes` detection masks with values ranging
between 0 and 1.
containing `num_boxes` detection masks with values ranging between 0 and
1.
Raises:
ValueError: if the number of boxes, scores and class labels differ in
......@@ -1083,13 +1088,14 @@ class ObjectDetectionEvaluation(object):
"""
if (len(detected_boxes) != len(detected_scores) or
len(detected_boxes) != len(detected_class_labels)):
raise ValueError('detected_boxes, detected_scores and '
'detected_class_labels should all have same lengths. Got'
'[%d, %d, %d]' % len(detected_boxes),
len(detected_scores), len(detected_class_labels))
raise ValueError(
'detected_boxes, detected_scores and '
'detected_class_labels should all have same lengths. Got'
'[%d, %d, %d]' % len(detected_boxes), len(detected_scores),
len(detected_class_labels))
if image_key in self.detection_keys:
logging.warn(
logging.warning(
'image %s has already been added to the detection result database',
image_key)
return
......@@ -1100,8 +1106,7 @@ class ObjectDetectionEvaluation(object):
groundtruth_class_labels = self.groundtruth_class_labels[image_key]
# Masks are popped instead of look up. The reason is that we do not want
# to keep all masks in memory which can cause memory overflow.
groundtruth_masks = self.groundtruth_masks.pop(
image_key)
groundtruth_masks = self.groundtruth_masks.pop(image_key)
groundtruth_is_difficult_list = self.groundtruth_is_difficult_list[
image_key]
groundtruth_is_group_of_list = self.groundtruth_is_group_of_list[
......@@ -1145,19 +1150,21 @@ class ObjectDetectionEvaluation(object):
statitistics.
Args:
groundtruth_class_labels: An integer numpy array of length M,
representing M class labels of object instances in ground truth
groundtruth_class_labels: An integer numpy array of length M, representing
M class labels of object instances in ground truth
groundtruth_is_difficult_list: A boolean numpy array of length M denoting
whether a ground truth box is a difficult instance or not
whether a ground truth box is a difficult instance or not
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box is a group-of box or not
whether a ground truth box is a group-of box or not
"""
for class_index in range(self.num_class):
num_gt_instances = np.sum(groundtruth_class_labels[
~groundtruth_is_difficult_list
& ~groundtruth_is_group_of_list] == class_index)
num_groupof_gt_instances = self.group_of_weight * np.sum(
groundtruth_class_labels[groundtruth_is_group_of_list] == class_index)
groundtruth_class_labels[groundtruth_is_group_of_list
& ~groundtruth_is_difficult_list] ==
class_index)
self.num_gt_instances_per_class[
class_index] += num_gt_instances + num_groupof_gt_instances
if np.any(groundtruth_class_labels == class_index):
......@@ -1178,7 +1185,7 @@ class ObjectDetectionEvaluation(object):
mean_corloc: Mean CorLoc score for each class, float scalar
"""
if (self.num_gt_instances_per_class == 0).any():
logging.warn(
logging.warning(
'The following classes have no ground truth examples: %s',
np.squeeze(np.argwhere(self.num_gt_instances_per_class == 0)) +
self.label_id_offset)
......@@ -1233,6 +1240,7 @@ class ObjectDetectionEvaluation(object):
else:
mean_ap = np.nanmean(self.average_precision_per_class)
mean_corloc = np.nanmean(self.corloc_per_class)
return ObjectDetectionEvalMetrics(
self.average_precision_per_class, mean_ap, self.precisions_per_class,
self.recalls_per_class, self.corloc_per_class, mean_corloc)
return ObjectDetectionEvalMetrics(self.average_precision_per_class, mean_ap,
self.precisions_per_class,
self.recalls_per_class,
self.corloc_per_class, mean_corloc)
......@@ -15,8 +15,13 @@
"""Tests for object_detection.utils.object_detection_evaluation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
import six
from six.moves import range
import tensorflow as tf
from object_detection import eval_util
from object_detection.core import standard_fields
......@@ -310,17 +315,14 @@ class OpenImagesChallengeEvaluatorTest(tf.test.TestCase):
expected_metric_name = 'OpenImagesInstanceSegmentationChallenge'
self.assertAlmostEqual(
metrics[
expected_metric_name + '_PerformanceByCategory/AP@0.5IOU/dog'],
0.5)
metrics[expected_metric_name + '_PerformanceByCategory/AP@0.5IOU/dog'],
1.0)
self.assertAlmostEqual(
metrics[
expected_metric_name + '_PerformanceByCategory/AP@0.5IOU/cat'],
0)
self.assertAlmostEqual(
metrics[
expected_metric_name + '_Precision/mAP@0.5IOU'],
0.25)
metrics[expected_metric_name + '_Precision/mAP@0.5IOU'], 0.5)
oivchallenge_evaluator.clear()
self.assertFalse(oivchallenge_evaluator._image_ids)
......@@ -925,7 +927,7 @@ class ObjectDetectionEvaluationTest(tf.test.TestCase):
]
expected_average_precision_per_class = np.array([1. / 6., 0, 0],
dtype=float)
expected_corloc_per_class = np.array([0, np.divide(0, 0), 0], dtype=float)
expected_corloc_per_class = np.array([0, 0, 0], dtype=float)
expected_mean_ap = 1. / 18
expected_mean_corloc = 0.0
for i in range(self.od_eval.num_class):
......@@ -1069,7 +1071,7 @@ class ObjectDetectionEvaluatorTest(tf.test.TestCase, parameterized.TestCase):
with self.test_session() as sess:
metrics = {}
for key, (value_op, _) in metric_ops.iteritems():
for key, (value_op, _) in six.iteritems(metric_ops):
metrics[key] = value_op
sess.run(update_op)
metrics = sess.run(metrics)
......
......@@ -14,10 +14,16 @@
# ==============================================================================
"""A module for helper tensorflow ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import six
from six.moves import range
from six.moves import zip
import tensorflow as tf
from object_detection.core import standard_fields as fields
......
......@@ -14,7 +14,13 @@
# ==============================================================================
"""Tests for object_detection.utils.ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import six
from six.moves import range
import tensorflow as tf
from object_detection.core import standard_fields as fields
......@@ -436,7 +442,7 @@ class GroundtruthFilterTest(tf.test.TestCase):
fields.InputDataFields.groundtruth_is_crowd: [False],
fields.InputDataFields.groundtruth_area: [32],
fields.InputDataFields.groundtruth_difficult: [True],
fields.InputDataFields.groundtruth_label_types: ['APPROPRIATE'],
fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')],
fields.InputDataFields.groundtruth_confidences: [0.99],
}
with self.test_session() as sess:
......@@ -610,7 +616,7 @@ class RetainGroundTruthWithPositiveClasses(tf.test.TestCase):
fields.InputDataFields.groundtruth_is_crowd: [False],
fields.InputDataFields.groundtruth_area: [32],
fields.InputDataFields.groundtruth_difficult: [True],
fields.InputDataFields.groundtruth_label_types: ['APPROPRIATE'],
fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')],
fields.InputDataFields.groundtruth_confidences: [0.99],
}
with self.test_session() as sess:
......@@ -819,8 +825,8 @@ class OpsTestPositionSensitiveCropRegions(tf.test.TestCase):
image_shape = [3, 2, 6]
# First channel is 1's, second channel is 2's, etc.
image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32,
shape=image_shape)
image = tf.constant(
list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
boxes = tf.random_uniform((2, 4))
# The result for both boxes should be [[1, 2], [3, 4], [5, 6]]
......@@ -841,8 +847,8 @@ class OpsTestPositionSensitiveCropRegions(tf.test.TestCase):
image_shape = [3, 3, 4]
crop_size = [2, 2]
image = tf.constant(range(1, 3 * 3 + 1), dtype=tf.float32,
shape=[3, 3, 1])
image = tf.constant(
list(range(1, 3 * 3 + 1)), dtype=tf.float32, shape=[3, 3, 1])
tiled_image = tf.tile(image, [1, 1, image_shape[2]])
boxes = tf.random_uniform((3, 4))
box_ind = tf.constant([0, 0, 0], dtype=tf.int32)
......@@ -908,8 +914,8 @@ class OpsTestPositionSensitiveCropRegions(tf.test.TestCase):
num_boxes = 2
# First channel is 1's, second channel is 2's, etc.
image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32,
shape=image_shape)
image = tf.constant(
list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
boxes = tf.random_uniform((num_boxes, 4))
expected_output = []
......@@ -945,8 +951,8 @@ class OpsTestPositionSensitiveCropRegions(tf.test.TestCase):
num_boxes = 2
# First channel is 1's, second channel is 2's, etc.
image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32,
shape=image_shape)
image = tf.constant(
list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
boxes = tf.random_uniform((num_boxes, 4))
expected_output = []
......@@ -1031,8 +1037,8 @@ class OpsTestBatchPositionSensitiveCropRegions(tf.test.TestCase):
image_shape = [2, 2, 2, 4]
crop_size = [2, 2]
images = tf.constant(range(1, 2 * 2 * 4 + 1) * 2, dtype=tf.float32,
shape=image_shape)
images = tf.constant(
list(range(1, 2 * 2 * 4 + 1)) * 2, dtype=tf.float32, shape=image_shape)
# First box contains whole image, and second box contains only first row.
boxes = tf.constant(np.array([[[0., 0., 1., 1.]],
......
......@@ -20,7 +20,12 @@ detection is supported by default.
Based on the settings, per image evaluation is either performed on boxes or
on object masks.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
from object_detection.utils import np_box_list
from object_detection.utils import np_box_list_ops
......
......@@ -15,7 +15,12 @@
"""Tests for object_detection.utils.per_image_evaluation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
import tensorflow as tf
from object_detection.utils import per_image_evaluation
......
......@@ -19,7 +19,12 @@ a predefined IOU ratio. Multi-class detection is supported by default.
Based on the settings, per image evaluation is performed either on phrase
detection subtask or on relation detection subtask.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
from object_detection.utils import np_box_list
from object_detection.utils import np_box_list_ops
......
......@@ -13,6 +13,11 @@
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.utils.per_image_vrd_evaluation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
......
......@@ -15,6 +15,11 @@
"""Utils used to manipulate tensor shapes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import zip
import tensorflow as tf
from object_detection.utils import static_shape
......
......@@ -15,6 +15,10 @@
"""Tests for object_detection.utils.shape_utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
......
......@@ -13,6 +13,11 @@
# limitations under the License.
# ==============================================================================
"""Spatial transformation ops like RoIAlign, CropAndResize."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
......@@ -32,7 +37,7 @@ def _coordinate_vector_1d(start, end, size, align_endpoints):
"""
start = tf.expand_dims(start, -1)
end = tf.expand_dims(end, -1)
length = tf.cast(end - start, dtype=tf.float32)
length = end - start
if align_endpoints:
relative_grid_spacing = tf.linspace(0.0, 1.0, size)
offset = 0 if size > 1 else length / 2
......@@ -40,6 +45,7 @@ def _coordinate_vector_1d(start, end, size, align_endpoints):
relative_grid_spacing = tf.linspace(0.0, 1.0, size + 1)[:-1]
offset = length / (2 * size)
relative_grid_spacing = tf.reshape(relative_grid_spacing, [1, 1, size])
relative_grid_spacing = tf.cast(relative_grid_spacing, dtype=start.dtype)
absolute_grid = start + offset + relative_grid_spacing * length
return absolute_grid
......@@ -170,12 +176,10 @@ def ravel_indices(feature_grid_y, feature_grid_x, num_levels, height, width,
indices: A 1D int32 tensor containing feature point indices in a flattened
feature grid.
"""
assert feature_grid_y.shape[0] == feature_grid_x.shape[0]
assert feature_grid_y.shape[1] == feature_grid_x.shape[1]
num_boxes = feature_grid_y.shape[1].value
batch_size = feature_grid_y.shape[0].value
size_y = feature_grid_y.shape[2]
size_x = feature_grid_x.shape[2]
num_boxes = tf.shape(feature_grid_y)[1]
batch_size = tf.shape(feature_grid_y)[0]
size_y = tf.shape(feature_grid_y)[2]
size_x = tf.shape(feature_grid_x)[2]
height_dim_offset = width
level_dim_offset = height * height_dim_offset
batch_dim_offset = num_levels * level_dim_offset
......@@ -213,17 +217,18 @@ def pad_to_max_size(features):
true_feature_shapes: A 2D int32 tensor of shape [num_levels, 2] containing
height and width of the feature maps before padding.
"""
heights = [feature.shape[1].value for feature in features]
widths = [feature.shape[2].value for feature in features]
max_height = max(heights)
max_width = max(widths)
heights = [tf.shape(feature)[1] for feature in features]
widths = [tf.shape(feature)[2] for feature in features]
max_height = tf.reduce_max(heights)
max_width = tf.reduce_max(widths)
features_all = [
tf.image.pad_to_bounding_box(feature, 0, 0, max_height,
max_width) for feature in features
]
features_all = tf.stack(features_all, axis=1)
true_feature_shapes = tf.stack([feature.shape[1:3] for feature in features])
true_feature_shapes = tf.stack([tf.shape(feature)[1:3]
for feature in features])
return features_all, true_feature_shapes
......@@ -247,7 +252,7 @@ def _gather_valid_indices(tensor, indices, padding_value=0.0):
padded_tensor = tf.concat(
[
padding_value *
tf.ones([1, tensor.shape[-1].value], dtype=tensor.dtype), tensor
tf.ones([1, tf.shape(tensor)[-1]], dtype=tensor.dtype), tensor
],
axis=0,
)
......@@ -307,9 +312,12 @@ def multilevel_roi_align(features, boxes, box_levels, output_size,
"""
with tf.name_scope(scope, 'MultiLevelRoIAlign'):
features, true_feature_shapes = pad_to_max_size(features)
(batch_size, num_levels, max_feature_height, max_feature_width,
num_filters) = features.get_shape().as_list()
_, num_boxes, _ = boxes.get_shape().as_list()
batch_size = tf.shape(features)[0]
num_levels = features.get_shape().as_list()[1]
max_feature_height = tf.shape(features)[2]
max_feature_width = tf.shape(features)[3]
num_filters = features.get_shape().as_list()[4]
num_boxes = tf.shape(boxes)[1]
# Convert boxes to absolute co-ordinates.
true_feature_shapes = tf.cast(true_feature_shapes, dtype=boxes.dtype)
......@@ -463,7 +471,7 @@ def matmul_crop_and_resize(image, boxes, crop_size, extrapolation_value=0.0,
A 5-D tensor of shape `[batch, num_boxes, crop_height, crop_width, depth]`
"""
with tf.name_scope(scope, 'MatMulCropAndResize'):
box_levels = tf.zeros(boxes.shape.as_list()[:2], dtype=tf.int32)
box_levels = tf.zeros(tf.shape(boxes)[:2], dtype=tf.int32)
return multilevel_roi_align([image],
boxes,
box_levels,
......
......@@ -19,6 +19,7 @@ from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import range
import tensorflow as tf
from object_detection.utils import spatial_transform_ops as spatial_ops
......
......@@ -18,6 +18,10 @@
The rank 4 tensor_shape must be of the form [batch_size, height, width, depth].
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
def get_dim_as_int(dim):
"""Utility to get v1 or v2 TensorShape dim as an int.
......
......@@ -15,6 +15,10 @@
"""Tests for object_detection.utils.static_shape."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from object_detection.utils import static_shape
......
......@@ -14,7 +14,11 @@
# ==============================================================================
"""A convenience wrapper around tf.test.TestCase to enable TPU tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from six.moves import zip
import tensorflow as tf
from tensorflow.contrib import tpu
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment