Commit fd94342b authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Merge pull request #9090 from xinliupitt:master

PiperOrigin-RevId: 326550493
parents 9824b44e a5857963
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implement Seq2Seq Transformer model by TF official NLP library.
Model paper: https://arxiv.org/pdf/1706.03762.pdf
"""
import math
import tensorflow as tf
from official.modeling import tf_utils
from official.nlp.modeling import layers
from official.nlp.modeling.ops import beam_search
from official.nlp.transformer import metrics
from official.nlp.transformer import model_utils
EOS_ID = 1
# pylint: disable=g-classes-have-attributes
def create_model(params, is_train):
"""Creates transformer model."""
encdec_kwargs = dict(
num_layers=params["num_hidden_layers"],
num_attention_heads=params["num_heads"],
intermediate_size=params["filter_size"],
activation="relu",
dropout_rate=params["relu_dropout"],
attention_dropout_rate=params["attention_dropout"],
use_bias=False,
norm_first=True,
norm_epsilon=1e-6,
intermediate_dropout=params["relu_dropout"])
encoder_layer = TransformerEncoder(**encdec_kwargs)
decoder_layer = TransformerDecoder(**encdec_kwargs)
model_kwargs = dict(
vocab_size=params["vocab_size"],
hidden_size=params["hidden_size"],
dropout_rate=params["layer_postprocess_dropout"],
padded_decode=params["padded_decode"],
num_replicas=params["num_replicas"],
decode_batch_size=params["decode_batch_size"],
decode_max_length=params["decode_max_length"],
dtype=params["dtype"],
extra_decode_length=params["extra_decode_length"],
num_heads=params["num_heads"],
num_layers=params["num_hidden_layers"],
beam_size=params["beam_size"],
alpha=params["alpha"],
encoder_layer=encoder_layer,
decoder_layer=decoder_layer,
name="transformer_v2")
with tf.name_scope("model"):
if is_train:
inputs = tf.keras.layers.Input((None,), dtype="int64", name="inputs")
targets = tf.keras.layers.Input((None,), dtype="int64", name="targets")
internal_model = Seq2SeqTransformer(**model_kwargs)
logits = internal_model([inputs, targets], training=is_train)
vocab_size = params["vocab_size"]
label_smoothing = params["label_smoothing"]
if params["enable_metrics_in_training"]:
logits = metrics.MetricLayer(vocab_size)([logits, targets])
logits = tf.keras.layers.Lambda(
lambda x: x, name="logits", dtype=tf.float32)(
logits)
model = tf.keras.Model([inputs, targets], logits)
loss = metrics.transformer_loss(logits, targets, label_smoothing,
vocab_size)
model.add_loss(loss)
return model
else:
inputs = tf.keras.layers.Input((None,), dtype="int64", name="inputs")
internal_model = Seq2SeqTransformer(**model_kwargs)
ret = internal_model([inputs], training=is_train)
outputs, scores = ret["outputs"], ret["scores"]
return tf.keras.Model(inputs, [outputs, scores])
@tf.keras.utils.register_keras_serializable(package="Text")
class Seq2SeqTransformer(tf.keras.Model):
"""Transformer model with Keras.
Implemented as described in: https://arxiv.org/pdf/1706.03762.pdf
The Transformer model consists of an encoder and decoder. The input is an int
sequence (or a batch of sequences). The encoder produces a continuous
representation, and the decoder uses the encoder output to generate
probabilities for the output sequence.
"""
def __init__(self,
vocab_size=33708,
hidden_size=512,
dropout_rate=0.0,
padded_decode=False,
num_replicas=1,
decode_batch_size=2048,
decode_max_length=97,
dtype=tf.float32,
extra_decode_length=0,
num_heads=8,
num_layers=6,
beam_size=4,
alpha=0.6,
encoder_layer=None,
decoder_layer=None,
name=None,
**kwargs):
"""Initialize layers to build Transformer model.
Arguments:
vocab_size: Size of vocabulary.
hidden_size: Size of hidden layer for embedding.
dropout_rate: Dropout probability.
padded_decode: Whether to max_sequence_length padding is used. If set
False, max_sequence_length padding is not used.
num_replicas: Number of replicas for distribution strategy.
decode_batch_size: batch_size for decoding.
decode_max_length: maximum number of steps to decode a sequence.
dtype: data type.
extra_decode_length: Beam search will run extra steps to decode.
num_heads: Number of attention heads.
num_layers: Number of identical layers for Transformer architecture.
beam_size: Number of beams for beam search
alpha: The strength of length normalization for beam search.
encoder_layer: An initialized encoder layer.
decoder_layer: An initialized decoder layer.
name: name of the model.
**kwargs: other keyword arguments.
"""
super(Seq2SeqTransformer, self).__init__(**kwargs)
self._vocab_size = vocab_size
self._hidden_size = hidden_size
self._dropout_rate = dropout_rate
self._padded_decode = padded_decode
self._num_replicas = num_replicas
self._decode_batch_size = decode_batch_size
self._decode_max_length = decode_max_length
self._dtype = dtype
self._extra_decode_length = extra_decode_length
self._num_heads = num_heads
self._num_layers = num_layers
self._beam_size = beam_size
self._alpha = alpha
self.embedding_lookup = layers.OnDeviceEmbedding(
vocab_size=self._vocab_size,
embedding_width=self._hidden_size,
initializer=tf.random_normal_initializer(
mean=0., stddev=self._hidden_size**-0.5),
use_scale=True)
self.encoder_layer = encoder_layer
self.decoder_layer = decoder_layer
self.position_embedding = layers.RelativePositionEmbedding(
hidden_size=self._hidden_size)
self.encoder_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
self.decoder_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
def get_config(self):
config = {
"vocab_size": self._vocab_size,
"hidden_size": self._hidden_size,
"dropout_rate": self._dropout_rate,
"padded_decode": self._padded_decode,
"num_replicas": self._num_replicas,
"decode_batch_size": self._decode_batch_size,
"decode_max_length": self._decode_max_length,
"dtype": self._dtype,
"extra_decode_length": self._extra_decode_length,
"num_heads": self._num_heads,
"num_layers": self._num_layers,
"beam_size": self._beam_size,
"alpha": self._alpha,
"encoder_layer": self.encoder_layer,
"decoder_layer": self.decoder_layer
}
base_config = super(Seq2SeqTransformer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs):
"""Calculate target logits or inferred target sequences.
Args:
inputs: input tensor list of size 1 or 2.
First item, inputs: int tensor with shape [batch_size, input_length].
Second item (optional), targets: None or int tensor with shape
[batch_size, target_length].
Returns:
If targets is defined, then return logits for each word in the target
sequence. float tensor with shape [batch_size, target_length, vocab_size]
If target is none, then generate output sequence one token at a time.
returns a dictionary {
outputs: [batch_size, decoded length]
scores: [batch_size, float]}
Even when float16 is used, the output tensor(s) are always float32.
Raises:
NotImplementedError: If try to use padded decode method on CPU/GPUs.
"""
if len(inputs) == 2:
inputs, targets = inputs[0], inputs[1]
else:
# Decoding path.
inputs, targets = inputs[0], None
# TODO(hongkuny): The check is not necessary. Fix this part.
if self._padded_decode:
if not self._num_replicas:
raise NotImplementedError(
"Padded decoding on CPU/GPUs is not supported.")
decode_batch_size = int(self._decode_batch_size / self._num_replicas)
inputs.set_shape([decode_batch_size, self._decode_max_length])
with tf.name_scope("Transformer"):
attention_bias = model_utils.get_padding_bias(inputs)
attention_bias = tf.cast(attention_bias, self._dtype)
with tf.name_scope("encode"):
# Prepare inputs to the layer stack by adding positional encodings and
# applying dropout.
embedded_inputs = self.embedding_lookup(inputs)
embedding_mask = tf.cast(
tf.not_equal(inputs, 0), self.embedding_lookup.embeddings.dtype)
embedded_inputs *= tf.expand_dims(embedding_mask, -1)
embedded_inputs = tf.cast(embedded_inputs, self._dtype)
# Attention_mask generation.
input_shape = tf_utils.get_shape_list(inputs, expected_rank=2)
attention_mask = tf.cast(
tf.reshape(
tf.not_equal(inputs, 0), [input_shape[0], 1, input_shape[1]]),
dtype=inputs.dtype)
broadcast_ones = tf.ones(
shape=[input_shape[0], input_shape[1], 1], dtype=inputs.dtype)
attention_mask = broadcast_ones * attention_mask
with tf.name_scope("add_pos_encoding"):
pos_encoding = self.position_embedding(inputs=embedded_inputs)
pos_encoding = tf.cast(pos_encoding, self._dtype)
encoder_inputs = embedded_inputs + pos_encoding
encoder_inputs = self.encoder_dropout(encoder_inputs)
encoder_outputs = self.encoder_layer(
encoder_inputs, attention_mask=attention_mask)
if targets is None:
encoder_decoder_attention_bias = attention_bias
encoder_outputs = tf.cast(encoder_outputs, self._dtype)
if self._padded_decode:
batch_size = encoder_outputs.shape.as_list()[0]
input_length = encoder_outputs.shape.as_list()[1]
else:
batch_size = tf.shape(encoder_outputs)[0]
input_length = tf.shape(encoder_outputs)[1]
max_decode_length = input_length + self._extra_decode_length
encoder_decoder_attention_bias = tf.cast(encoder_decoder_attention_bias,
self._dtype)
symbols_to_logits_fn = self._get_symbols_to_logits_fn(max_decode_length)
# Create initial set of IDs that will be passed to symbols_to_logits_fn.
initial_ids = tf.zeros([batch_size], dtype=tf.int32)
# Create cache storing decoder attention values for each layer.
# pylint: disable=g-complex-comprehension
init_decode_length = (max_decode_length if self._padded_decode else 0)
num_heads = self._num_heads
dim_per_head = self._hidden_size // num_heads
cache = {
str(layer): {
"key":
tf.zeros([
batch_size, init_decode_length, num_heads, dim_per_head
],
dtype=self._dtype),
"value":
tf.zeros([
batch_size, init_decode_length, num_heads, dim_per_head
],
dtype=self._dtype)
} for layer in range(self._num_layers)
}
# pylint: enable=g-complex-comprehension
# Add encoder output and attention bias to the cache.
cache["encoder_outputs"] = encoder_outputs
cache["encoder_decoder_attention_bias"] = encoder_decoder_attention_bias
# Use beam search to find the top beam_size sequences and scores.
decoded_ids, scores = beam_search.sequence_beam_search(
symbols_to_logits_fn=symbols_to_logits_fn,
initial_ids=initial_ids,
initial_cache=cache,
vocab_size=self._vocab_size,
beam_size=self._beam_size,
alpha=self._alpha,
max_decode_length=max_decode_length,
eos_id=EOS_ID,
padded_decode=self._padded_decode,
dtype=self._dtype)
# Get the top sequence for each batch element
top_decoded_ids = decoded_ids[:, 0, 1:]
top_scores = scores[:, 0]
return {"outputs": top_decoded_ids, "scores": top_scores}
else:
with tf.name_scope("decode"):
decoder_inputs = self.embedding_lookup(targets)
embedding_mask = tf.cast(
tf.not_equal(targets, 0), self.embedding_lookup.embeddings.dtype)
decoder_inputs *= tf.expand_dims(embedding_mask, -1)
decoder_inputs = tf.cast(decoder_inputs, self._dtype)
with tf.name_scope("shift_targets"):
# Shift targets to the right, and remove the last element
decoder_inputs = tf.pad(decoder_inputs,
[[0, 0], [1, 0], [0, 0]])[:, :-1, :]
with tf.name_scope("add_pos_encoding"):
length = tf.shape(decoder_inputs)[1]
pos_encoding = self.position_embedding(decoder_inputs)
pos_encoding = tf.cast(pos_encoding, self._dtype)
decoder_inputs += pos_encoding
decoder_inputs = self.decoder_dropout(decoder_inputs)
decoder_shape = tf_utils.get_shape_list(
decoder_inputs, expected_rank=3)
batch_size = decoder_shape[0]
decoder_length = decoder_shape[1]
self_attention_mask = tf.linalg.band_part(
tf.ones([length, length], dtype=tf.float32), -1, 0)
self_attention_mask = tf.reshape(self_attention_mask,
[1, length, length])
self_attention_mask = tf.tile(self_attention_mask, [batch_size, 1, 1])
attention_mask = tf.cast(
tf.expand_dims(tf.not_equal(inputs, 0), axis=1),
dtype=inputs.dtype)
attention_mask = tf.tile(attention_mask, [1, decoder_length, 1])
outputs = self.decoder_layer(
decoder_inputs,
encoder_outputs,
memory_mask=self_attention_mask,
target_mask=attention_mask)
logits = embedding_linear(self.embedding_lookup.embeddings, outputs)
logits = tf.cast(logits, tf.float32)
return logits
def _get_symbols_to_logits_fn(self, max_decode_length):
"""Returns a decoding function that calculates logits of the next tokens."""
timing_signal = self.position_embedding(
inputs=None, length=max_decode_length + 1)
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
max_decode_length, dtype=self._dtype)
def symbols_to_logits_fn(ids, i, cache):
"""Generate logits for next potential IDs.
Args:
ids: Current decoded sequences. int tensor with shape [batch_size *
beam_size, i + 1].
i: Loop index.
cache: dictionary of values storing the encoder output, encoder-decoder
attention bias, and previous decoder attention values.
Returns:
Tuple of
(logits with shape [batch_size * beam_size, vocab_size],
updated cache values)
"""
# Set decoder input to the last generated IDs
decoder_input = ids[:, -1:]
# Preprocess decoder input by getting embeddings and adding timing signal.
# decoder_input = self.embedding_softmax_layer(decoder_input)
source_decoder_input = decoder_input
decoder_input = self.embedding_lookup(decoder_input)
embedding_mask = tf.cast(
tf.not_equal(source_decoder_input, 0),
self.embedding_lookup.embeddings.dtype)
decoder_input *= tf.expand_dims(embedding_mask, -1)
if self._padded_decode:
timing_signal_shape = timing_signal.shape.as_list()
decoder_input += tf.slice(timing_signal, [i, 0],
[1, timing_signal_shape[1]])
bias_shape = decoder_self_attention_bias.shape.as_list()
self_attention_bias = tf.slice(
decoder_self_attention_bias, [0, 0, i, 0],
[bias_shape[0], bias_shape[1], 1, bias_shape[3]])
else:
decoder_input += timing_signal[i:i + 1]
self_attention_bias = decoder_self_attention_bias[:, :, i:i + 1, :i + 1]
decoder_shape = tf_utils.get_shape_list(decoder_input, expected_rank=3)
batch_size = decoder_shape[0]
decoder_length = decoder_shape[1]
attention_bias = cache.get("encoder_decoder_attention_bias")
attention_bias = tf.where(attention_bias < 0,
tf.zeros_like(attention_bias),
tf.ones_like(attention_bias))
attention_bias = tf.squeeze(attention_bias, axis=[1])
attention_mask = tf.tile(attention_bias, [1, decoder_length, 1])
self_attention_bias = tf.where(self_attention_bias < 0,
tf.zeros_like(self_attention_bias),
tf.ones_like(self_attention_bias))
self_attention_bias = tf.squeeze(self_attention_bias, axis=[1])
self_attention_mask = tf.tile(self_attention_bias, [batch_size, 1, 1])
decoder_outputs = self.decoder_layer(
decoder_input,
cache.get("encoder_outputs"),
memory_mask=self_attention_mask,
target_mask=attention_mask,
cache=cache,
decode_loop_step=i if self._padded_decode else None)
logits = embedding_linear(self.embedding_lookup.embeddings,
decoder_outputs)
logits = tf.squeeze(logits, axis=[1])
return logits, cache
return symbols_to_logits_fn
class TransformerEncoder(tf.keras.layers.Layer):
"""Transformer encoder.
Transformer encoder is made up of N identical layers. Each layer is composed
of the sublayers:
1. Self-attention layer
2. Feedforward network (which is 2 fully-connected layers)
Arguments:
num_layers: Number of layers.
num_attention_heads: Number of attention heads.
intermediate_size: Size of the intermediate (Feedforward) layer.
activation: Activation for the intermediate layer.
dropout_rate: Dropout probability.
attention_dropout_rate: Dropout probability for attention layers.
use_bias: Whether to enable use_bias in attention layer. If set False,
use_bias in attention layer is disabled.
norm_first: Whether to normalize inputs to attention and intermediate dense
layers. If set False, output of attention and intermediate dense layers is
normalized.
norm_epsilon: Epsilon value to initialize normalization layers.
intermediate_dropout: Dropout probability for intermediate_dropout_layer.
"""
def __init__(self,
num_layers=6,
num_attention_heads=8,
intermediate_size=2048,
activation="relu",
dropout_rate=0.0,
attention_dropout_rate=0.0,
use_bias=False,
norm_first=True,
norm_epsilon=1e-6,
intermediate_dropout=0.0,
**kwargs):
super(TransformerEncoder, self).__init__(**kwargs)
self._num_layers = num_layers
self._num_attention_heads = num_attention_heads
self._intermediate_size = intermediate_size
self._activation = activation
self._dropout_rate = dropout_rate
self._attention_dropout_rate = attention_dropout_rate
self._use_bias = use_bias
self._norm_first = norm_first
self._norm_epsilon = norm_epsilon
self._intermediate_dropout = intermediate_dropout
def build(self, input_shape):
"""Implements build() for the layer."""
self.encoder_layers = []
for i in range(self._num_layers):
self.encoder_layers.append(
layers.Transformer(
num_attention_heads=self._num_attention_heads,
intermediate_size=self._intermediate_size,
intermediate_activation=self._activation,
dropout_rate=self._dropout_rate,
attention_dropout_rate=self._attention_dropout_rate,
use_bias=self._use_bias,
norm_first=self._norm_first,
norm_epsilon=self._norm_epsilon,
intermediate_dropout=self._intermediate_dropout,
attention_initializer=attention_initializer(input_shape[2]),
name=("layer_%d" % i)))
self.output_normalization = tf.keras.layers.LayerNormalization(
epsilon=self._norm_epsilon, dtype="float32")
super(TransformerEncoder, self).build(input_shape)
def get_config(self):
config = {
"num_layers": self._num_layers,
"num_attention_heads": self._num_attention_heads,
"intermediate_size": self._intermediate_size,
"activation": self._activation,
"dropout_rate": self._dropout_rate,
"attention_dropout_rate": self._attention_dropout_rate,
"use_bias": self._use_bias,
"norm_first": self._norm_first,
"norm_epsilon": self._norm_epsilon,
"intermediate_dropout": self._intermediate_dropout
}
base_config = super(TransformerEncoder, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, encoder_inputs, attention_mask=None):
"""Return the output of the encoder.
Args:
encoder_inputs: tensor with shape [batch_size, input_length, hidden_size]
attention_mask: mask for the encoder self-attention layer. [batch_size,
input_length, input_length]
Returns:
Output of encoder.
float32 tensor with shape [batch_size, input_length, hidden_size]
"""
for layer_idx in range(self._num_layers):
encoder_inputs = self.encoder_layers[layer_idx](
[encoder_inputs, attention_mask])
output_tensor = encoder_inputs
output_tensor = self.output_normalization(output_tensor)
return output_tensor
class TransformerDecoder(tf.keras.layers.Layer):
"""Transformer decoder.
Like the encoder, the decoder is made up of N identical layers.
Each layer is composed of the sublayers:
1. Self-attention layer
2. Multi-headed attention layer combining encoder outputs with results from
the previous self-attention layer.
3. Feedforward network (2 fully-connected layers)
Arguments:
num_layers: Number of layers.
num_attention_heads: Number of attention heads.
intermediate_size: Size of the intermediate (Feedforward) layer.
activation: Activation for the intermediate layer.
dropout_rate: Dropout probability.
attention_dropout_rate: Dropout probability for attention layers.
use_bias: Whether to enable use_bias in attention layer. If set False,
use_bias in attention layer is disabled.
norm_first: Whether to normalize inputs to attention and intermediate dense
layers. If set False, output of attention and intermediate dense layers is
normalized.
norm_epsilon: Epsilon value to initialize normalization layers.
intermediate_dropout: Dropout probability for intermediate_dropout_layer.
"""
def __init__(self,
num_layers=6,
num_attention_heads=8,
intermediate_size=2048,
activation="relu",
dropout_rate=0.0,
attention_dropout_rate=0.0,
use_bias=False,
norm_first=True,
norm_epsilon=1e-6,
intermediate_dropout=0.0,
**kwargs):
super(TransformerDecoder, self).__init__(**kwargs)
self._num_layers = num_layers
self._num_attention_heads = num_attention_heads
self._intermediate_size = intermediate_size
self._activation = activation
self._dropout_rate = dropout_rate
self._attention_dropout_rate = attention_dropout_rate
self._use_bias = use_bias
self._norm_first = norm_first
self._norm_epsilon = norm_epsilon
self._intermediate_dropout = intermediate_dropout
def build(self, input_shape):
"""Implements build() for the layer."""
self.decoder_layers = []
for i in range(self._num_layers):
self.decoder_layers.append(
layers.TransformerDecoderLayer(
num_attention_heads=self._num_attention_heads,
intermediate_size=self._intermediate_size,
intermediate_activation=self._activation,
dropout_rate=self._dropout_rate,
attention_dropout_rate=self._attention_dropout_rate,
use_bias=self._use_bias,
norm_first=self._norm_first,
norm_epsilon=self._norm_epsilon,
intermediate_dropout=self._intermediate_dropout,
attention_initializer=attention_initializer(input_shape[2]),
name=("layer_%d" % i)))
self.output_normalization = tf.keras.layers.LayerNormalization(
epsilon=1e-6, dtype="float32")
super(TransformerDecoder, self).build(input_shape)
def get_config(self):
config = {
"num_layers": self._num_layers,
"num_attention_heads": self._num_attention_heads,
"intermediate_size": self._intermediate_size,
"activation": self._activation,
"dropout_rate": self._dropout_rate,
"attention_dropout_rate": self._attention_dropout_rate,
"use_bias": self._use_bias,
"norm_first": self._norm_first,
"norm_epsilon": self._norm_epsilon,
"intermediate_dropout": self._intermediate_dropout
}
base_config = super(TransformerDecoder, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self,
target,
memory,
memory_mask=None,
target_mask=None,
cache=None,
decode_loop_step=None):
"""Return the output of the decoder layer stacks.
Args:
target: A tensor with shape [batch_size, target_length, hidden_size].
memory: A tensor with shape [batch_size, input_length, hidden_size]
memory_mask: A tensor with shape [batch_size, target_len, target_length],
the mask for decoder self-attention layer.
target_mask: A tensor with shape [batch_size, target_length, input_length]
which is the mask for encoder-decoder attention layer.
cache: (Used for fast decoding) A nested dictionary storing previous
decoder self-attention values. The items are:
{layer_n: {"k": A tensor with shape [batch_size, i, key_channels],
"v": A tensor with shape [batch_size, i, value_channels]},
...}
decode_loop_step: An integer, the step number of the decoding loop. Used
only for autoregressive inference on TPU.
Returns:
Output of decoder.
float32 tensor with shape [batch_size, target_length, hidden_size]
"""
output_tensor = target
for layer_idx in range(self._num_layers):
transformer_inputs = [output_tensor, memory, target_mask, memory_mask]
# Gets the cache for decoding.
if cache is None:
output_tensor, _ = self.decoder_layers[layer_idx](transformer_inputs)
else:
cache_layer_idx = str(layer_idx)
output_tensor, cache[cache_layer_idx] = self.decoder_layers[layer_idx](
transformer_inputs,
cache=cache[cache_layer_idx],
decode_loop_step=decode_loop_step)
return self.output_normalization(output_tensor)
def embedding_linear(embedding_matrix, x):
"""Uses embeddings as linear transformation weights."""
with tf.name_scope("presoftmax_linear"):
batch_size = tf.shape(x)[0]
length = tf.shape(x)[1]
hidden_size = tf.shape(x)[2]
vocab_size = tf.shape(embedding_matrix)[0]
x = tf.reshape(x, [-1, hidden_size])
logits = tf.matmul(x, embedding_matrix, transpose_b=True)
return tf.reshape(logits, [batch_size, length, vocab_size])
def attention_initializer(hidden_size):
"""Initializer for attention layers in Seq2SeqTransformer."""
limit = math.sqrt(6.0 / (hidden_size + hidden_size))
return tf.keras.initializers.RandomUniform(minval=-limit, maxval=limit)
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test Transformer model."""
import tensorflow as tf
from official.nlp.modeling.models import seq2seq_transformer
from official.nlp.transformer import model_params
class Seq2SeqTransformerTest(tf.test.TestCase):
def setUp(self):
super().setUp()
self.params = params = model_params.TINY_PARAMS
params["batch_size"] = params["default_batch_size"] = 16
params["hidden_size"] = 12
params["num_hidden_layers"] = 2
params["filter_size"] = 14
params["num_heads"] = 2
params["vocab_size"] = 41
params["extra_decode_length"] = 2
params["beam_size"] = 3
params["dtype"] = tf.float32
def test_create_model_train(self):
model = seq2seq_transformer.create_model(self.params, True)
inputs, outputs = model.inputs, model.outputs
self.assertLen(inputs, 2)
self.assertLen(outputs, 1)
self.assertEqual(inputs[0].shape.as_list(), [None, None])
self.assertEqual(inputs[0].dtype, tf.int64)
self.assertEqual(inputs[1].shape.as_list(), [None, None])
self.assertEqual(inputs[1].dtype, tf.int64)
self.assertEqual(outputs[0].shape.as_list(), [None, None, 41])
self.assertEqual(outputs[0].dtype, tf.float32)
def test_create_model_not_train(self):
model = seq2seq_transformer.create_model(self.params, False)
inputs, outputs = model.inputs, model.outputs
self.assertEqual(len(inputs), 1)
self.assertEqual(len(outputs), 2)
self.assertEqual(inputs[0].shape.as_list(), [None, None])
self.assertEqual(inputs[0].dtype, tf.int64)
self.assertEqual(outputs[0].shape.as_list(), [None, None])
self.assertEqual(outputs[0].dtype, tf.int32)
self.assertEqual(outputs[1].shape.as_list(), [None])
self.assertEqual(outputs[1].dtype, tf.float32)
if __name__ == "__main__":
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment