Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
fc5145c3
Commit
fc5145c3
authored
Oct 29, 2017
by
Vivek Rathod
Browse files
nasnet config, model and release info.
parent
74a03640
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
185 additions
and
20 deletions
+185
-20
research/object_detection/README.md
research/object_detection/README.md
+33
-18
research/object_detection/g3doc/detection_model_zoo.md
research/object_detection/g3doc/detection_model_zoo.md
+1
-0
research/object_detection/g3doc/running_pets.md
research/object_detection/g3doc/running_pets.md
+3
-2
research/object_detection/samples/configs/faster_rcnn_nas_coco.config
...ect_detection/samples/configs/faster_rcnn_nas_coco.config
+148
-0
No files found.
research/object_detection/README.md
View file @
fc5145c3
...
...
@@ -31,43 +31,58 @@ https://scholar.googleusercontent.com/scholar.bib?q=info:l291WsrB-hQJ:scholar.go
## Table of contents
Before You Start:
*
<a
href=
'g3doc/installation.md'
>
Installation
</a><br>
Quick Start:
*
<a
href=
'object_detection_tutorial.ipynb'
>
*
<a
href=
'object_detection_tutorial.ipynb'
>
Quick Start: Jupyter notebook for off-the-shelf inference
</a><br>
*
<a
href=
"g3doc/running_pets.md"
>
Quick Start: Training a pet detector
</a><br>
*
<a
href=
"g3doc/running_pets.md"
>
Quick Start: Training a pet detector
</a><br>
Setup:
*
<a
href=
'g3doc/configuring_jobs.md'
>
*
<a
href=
'g3doc/installation.md'
>
Installation
</a><br>
*
<a
href=
'g3doc/configuring_jobs.md'
>
Configuring an object detection pipeline
</a><br>
*
<a
href=
'g3doc/preparing_inputs.md'
>
Preparing inputs
</a><br>
*
<a
href=
'g3doc/preparing_inputs.md'
>
Preparing inputs
</a><br>
Running:
*
<a
href=
'g3doc/running_locally.md'
>
Running locally
</a><br>
*
<a
href=
'g3doc/running_on_cloud.md'
>
Running on the cloud
</a><br>
*
<a
href=
'g3doc/running_locally.md'
>
Running locally
</a><br>
*
<a
href=
'g3doc/running_on_cloud.md'
>
Running on the cloud
</a><br>
Extras:
*
<a
href=
'g3doc/detection_model_zoo.md'
>
Tensorflow detection model zoo
</a><br>
*
<a
href=
'g3doc/exporting_models.md'
>
*
<a
href=
'g3doc/detection_model_zoo.md'
>
Tensorflow detection model zoo
</a><br>
*
<a
href=
'g3doc/exporting_models.md'
>
Exporting a trained model for inference
</a><br>
*
<a
href=
'g3doc/defining_your_own_model.md'
>
*
<a
href=
'g3doc/defining_your_own_model.md'
>
Defining your own model architecture
</a><br>
*
<a
href=
'g3doc/using_your_own_dataset.md'
>
*
<a
href=
'g3doc/using_your_own_dataset.md'
>
Bringing in your own dataset
</a><br>
## Getting Help
Please report bugs to the tensorflow/models/ Github
To get help with issues you may encounter using the Tensorflow Object Detection
API, create a new question on
[
StackOverflow
](
https://stackoverflow.com/
)
with
the tags "tensorflow" and "object-detection".
Please report bugs (actually broken code, not usage questions) to the
tensorflow/models Github
[
issue tracker
](
https://github.com/tensorflow/models/issues
)
, prefixing the
issue name with "object_detection". To get help with issues you may encounter
using the Tensorflow Object Detection API, create a new question on
[
StackOverflow
](
https://stackoverflow.com/
)
with the tags "tensorflow" and
"object-detection".
issue name with "object_detection".
## Release information
### October 31, 2017
We have released a new state-of-the-art model for object detection using
the Faster-RCNN with the
[
NASNet-A image featurization
](
https://arxiv.org/abs/1707.07012
)
. This
model achieves mAP of 43.1% on the test-dev validation dataset for COCO,
improving on the best available model in the zoo by 6% in terms
of absolute mAP.
<b>
Thanks to contributors
</b>
: Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc Le
### August 11, 2017
We have released an update to the
[
Android Detect
...
...
research/object_detection/g3doc/detection_model_zoo.md
View file @
fc5145c3
...
...
@@ -40,3 +40,4 @@ Inside the un-tar'ed directory, you will find:
|
[
rfcn_resnet101_coco
](
http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_11_06_2017.tar.gz
)
| medium | 30 | Boxes |
|
[
faster_rcnn_resnet101_coco
](
http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_11_06_2017.tar.gz
)
| medium | 32 | Boxes |
|
[
faster_rcnn_inception_resnet_v2_atrous_coco
](
http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017.tar.gz
)
| slow | 37 | Boxes |
|
[
faster_rcnn_nas
](
http://download.tensorflow.org/models/object_detection/faster_rcnn_nas_17_10_2017.tar.gz
)
| slow | 43 | Boxes |
research/object_detection/g3doc/running_pets.md
View file @
fc5145c3
...
...
@@ -298,10 +298,11 @@ python object_detection/export_inference_graph.py \
--input_type
image_tensor
\
--pipeline_config_path
object_detection/samples/configs/faster_rcnn_resnet101_pets.config
\
--trained_checkpoint_prefix
model.ckpt-
${
CHECKPOINT_NUMBER
}
\
--output_directory
output_inference
_graph
.pb
--output_directory
exported
_graph
s
```
Afterwards, you should see a graph named
`output_inference_graph.pb`
.
Afterwards, you should see a directory named
`exported_graphs`
containing the
SavedModel and frozen graph.
## What's Next
...
...
research/object_detection/samples/configs/faster_rcnn_nas_coco.config
0 → 100644
View file @
fc5145c3
# Faster R-CNN with NASNet-A featurization
# Configured for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model
{
faster_rcnn
{
num_classes
:
90
image_resizer
{
# TODO(shlens): Only fixed_shape_resizer is currently supported for NASNet
# featurization. The reason for this is that nasnet.py only supports
# inputs with fully known shapes. We need to update nasnet.py to handle
# shapes not known at compile time.
fixed_shape_resizer
{
height
:
1200
width
:
1200
}
}
feature_extractor
{
type
:
'faster_rcnn_nas'
}
first_stage_anchor_generator
{
grid_anchor_generator
{
scales
: [
0
.
25
,
0
.
5
,
1
.
0
,
2
.
0
]
aspect_ratios
: [
0
.
5
,
1
.
0
,
2
.
0
]
height_stride
:
16
width_stride
:
16
}
}
first_stage_box_predictor_conv_hyperparams
{
op
:
CONV
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
truncated_normal_initializer
{
stddev
:
0
.
01
}
}
}
first_stage_nms_score_threshold
:
0
.
0
first_stage_nms_iou_threshold
:
0
.
7
first_stage_max_proposals
:
50
first_stage_localization_loss_weight
:
2
.
0
first_stage_objectness_loss_weight
:
1
.
0
initial_crop_size
:
17
maxpool_kernel_size
:
1
maxpool_stride
:
1
second_stage_box_predictor
{
mask_rcnn_box_predictor
{
use_dropout
:
false
dropout_keep_probability
:
1
.
0
fc_hyperparams
{
op
:
FC
regularizer
{
l2_regularizer
{
weight
:
0
.
0
}
}
initializer
{
variance_scaling_initializer
{
factor
:
1
.
0
uniform
:
true
mode
:
FAN_AVG
}
}
}
}
}
second_stage_post_processing
{
batch_non_max_suppression
{
score_threshold
:
0
.
0
iou_threshold
:
0
.
6
max_detections_per_class
:
100
max_total_detections
:
100
}
score_converter
:
SOFTMAX
}
second_stage_localization_loss_weight
:
2
.
0
second_stage_classification_loss_weight
:
1
.
0
}
}
train_config
: {
batch_size
:
1
optimizer
{
momentum_optimizer
: {
learning_rate
: {
manual_step_learning_rate
{
initial_learning_rate
:
0
.
0003
schedule
{
step
:
0
learning_rate
: .
0003
}
schedule
{
step
:
900000
learning_rate
: .
00003
}
schedule
{
step
:
1200000
learning_rate
: .
000003
}
}
}
momentum_optimizer_value
:
0
.
9
}
use_moving_average
:
false
}
gradient_clipping_by_norm
:
10
.
0
fine_tune_checkpoint
:
"PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint
:
true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps
:
200000
data_augmentation_options
{
random_horizontal_flip
{
}
}
}
train_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
eval_config
: {
metrics_set
:
"pascal_voc_metrics"
num_examples
:
8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals
:
10
}
eval_input_reader
: {
tf_record_input_reader
{
input_path
:
"PATH_TO_BE_CONFIGURED/mscoco_val.record"
}
label_map_path
:
"PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle
:
false
num_readers
:
1
num_epochs
:
1
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment