Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
f31e7ef9
Commit
f31e7ef9
authored
Jul 14, 2020
by
Chen Chen
Committed by
A. Unique TensorFlower
Jul 14, 2020
Browse files
Add a predict method for sentence_prediction task.
PiperOrigin-RevId: 321112219
parent
79f3edb6
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
111 additions
and
0 deletions
+111
-0
official/nlp/tasks/sentence_prediction.py
official/nlp/tasks/sentence_prediction.py
+52
-0
official/nlp/tasks/sentence_prediction_test.py
official/nlp/tasks/sentence_prediction_test.py
+59
-0
No files found.
official/nlp/tasks/sentence_prediction.py
View file @
f31e7ef9
...
@@ -14,9 +14,12 @@
...
@@ -14,9 +14,12 @@
# limitations under the License.
# limitations under the License.
# ==============================================================================
# ==============================================================================
"""Sentence prediction (classification) task."""
"""Sentence prediction (classification) task."""
from
typing
import
List
,
Union
from
absl
import
logging
from
absl
import
logging
import
dataclasses
import
dataclasses
import
numpy
as
np
import
numpy
as
np
import
orbit
from
scipy
import
stats
from
scipy
import
stats
from
sklearn
import
metrics
as
sklearn_metrics
from
sklearn
import
metrics
as
sklearn_metrics
import
tensorflow
as
tf
import
tensorflow
as
tf
...
@@ -223,3 +226,52 @@ class SentencePredictionTask(base_task.Task):
...
@@ -223,3 +226,52 @@ class SentencePredictionTask(base_task.Task):
status
.
expect_partial
().
assert_existing_objects_matched
()
status
.
expect_partial
().
assert_existing_objects_matched
()
logging
.
info
(
'Finished loading pretrained checkpoint from %s'
,
logging
.
info
(
'Finished loading pretrained checkpoint from %s'
,
ckpt_dir_or_file
)
ckpt_dir_or_file
)
def
predict
(
task
:
SentencePredictionTask
,
params
:
cfg
.
DataConfig
,
model
:
tf
.
keras
.
Model
)
->
List
[
Union
[
int
,
float
]]:
"""Predicts on the input data.
Args:
task: A `SentencePredictionTask` object.
params: A `cfg.DataConfig` object.
model: A keras.Model.
Returns:
A list of predictions with length of `num_examples`. For regression task,
each element in the list is the predicted score; for classification task,
each element is the predicted class id.
"""
is_regression
=
task
.
task_config
.
model
.
num_classes
==
1
@
tf
.
function
def
predict_step
(
iterator
):
"""Predicts on distributed devices."""
def
_replicated_step
(
inputs
):
"""Replicated prediction calculation."""
x
,
_
=
inputs
outputs
=
task
.
inference_step
(
x
,
model
)
if
is_regression
:
return
outputs
else
:
return
tf
.
argmax
(
outputs
,
axis
=-
1
)
outputs
=
tf
.
distribute
.
get_strategy
().
run
(
_replicated_step
,
args
=
(
next
(
iterator
),))
return
tf
.
nest
.
map_structure
(
tf
.
distribute
.
get_strategy
().
experimental_local_results
,
outputs
)
def
reduce_fn
(
state
,
outputs
):
"""Concatenates model's outputs."""
for
per_replica_batch_predictions
in
outputs
:
state
.
extend
(
per_replica_batch_predictions
)
return
state
loop_fn
=
orbit
.
utils
.
create_loop_fn
(
predict_step
)
dataset
=
orbit
.
utils
.
make_distributed_dataset
(
tf
.
distribute
.
get_strategy
(),
task
.
build_inputs
,
params
)
# Set `num_steps` to -1 to exhaust the dataset.
predictions
=
loop_fn
(
iter
(
dataset
),
num_steps
=-
1
,
state
=
[],
reduce_fn
=
reduce_fn
)
return
predictions
official/nlp/tasks/sentence_prediction_test.py
View file @
f31e7ef9
...
@@ -18,6 +18,7 @@ import functools
...
@@ -18,6 +18,7 @@ import functools
import
os
import
os
from
absl.testing
import
parameterized
from
absl.testing
import
parameterized
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.nlp.bert
import
configs
from
official.nlp.bert
import
configs
...
@@ -28,6 +29,35 @@ from official.nlp.data import sentence_prediction_dataloader
...
@@ -28,6 +29,35 @@ from official.nlp.data import sentence_prediction_dataloader
from
official.nlp.tasks
import
sentence_prediction
from
official.nlp.tasks
import
sentence_prediction
def
_create_fake_dataset
(
output_path
,
seq_length
,
num_classes
,
num_examples
):
"""Creates a fake dataset."""
writer
=
tf
.
io
.
TFRecordWriter
(
output_path
)
def
create_int_feature
(
values
):
return
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
list
(
values
)))
def
create_float_feature
(
values
):
return
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
list
(
values
)))
for
_
in
range
(
num_examples
):
features
=
{}
input_ids
=
np
.
random
.
randint
(
100
,
size
=
(
seq_length
))
features
[
"input_ids"
]
=
create_int_feature
(
input_ids
)
features
[
"input_mask"
]
=
create_int_feature
(
np
.
ones_like
(
input_ids
))
features
[
"segment_ids"
]
=
create_int_feature
(
np
.
ones_like
(
input_ids
))
features
[
"segment_ids"
]
=
create_int_feature
(
np
.
ones_like
(
input_ids
))
if
num_classes
==
1
:
features
[
"label_ids"
]
=
create_float_feature
([
np
.
random
.
random
()])
else
:
features
[
"label_ids"
]
=
create_int_feature
(
[
np
.
random
.
random_integers
(
0
,
num_classes
-
1
,
size
=
())])
tf_example
=
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
features
))
writer
.
write
(
tf_example
.
SerializeToString
())
writer
.
close
()
class
SentencePredictionTaskTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
class
SentencePredictionTaskTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
...
@@ -189,6 +219,35 @@ class SentencePredictionTaskTest(tf.test.TestCase, parameterized.TestCase):
...
@@ -189,6 +219,35 @@ class SentencePredictionTaskTest(tf.test.TestCase, parameterized.TestCase):
train_data
=
self
.
_train_data_config
)
train_data
=
self
.
_train_data_config
)
self
.
_run_task
(
config
)
self
.
_run_task
(
config
)
@
parameterized
.
named_parameters
((
"classification"
,
5
),
(
"regression"
,
1
))
def
test_prediction
(
self
,
num_classes
):
task_config
=
sentence_prediction
.
SentencePredictionConfig
(
model
=
self
.
get_model_config
(
num_classes
=
num_classes
),
train_data
=
self
.
_train_data_config
)
task
=
sentence_prediction
.
SentencePredictionTask
(
task_config
)
model
=
task
.
build_model
()
test_data_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
"test.tf_record"
)
seq_length
=
16
num_examples
=
100
_create_fake_dataset
(
test_data_path
,
seq_length
=
seq_length
,
num_classes
=
num_classes
,
num_examples
=
num_examples
)
test_data_config
=
(
sentence_prediction_dataloader
.
SentencePredictionDataConfig
(
input_path
=
test_data_path
,
seq_length
=
seq_length
,
is_training
=
False
,
label_type
=
"int"
if
num_classes
>
1
else
"float"
,
global_batch_size
=
16
,
drop_remainder
=
False
))
predictions
=
sentence_prediction
.
predict
(
task
,
test_data_config
,
model
)
self
.
assertLen
(
predictions
,
num_examples
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment