Commit e7de233b authored by Vivek Rathod's avatar Vivek Rathod
Browse files

updates changes in object_detecion/cores directory.

parent edcd29f2
......@@ -264,6 +264,11 @@ py_library(
srcs = ["data_decoder.py"],
)
py_library(
name = "data_parser",
srcs = ["data_parser.py"],
)
py_library(
name = "box_predictor",
srcs = ["box_predictor.py"],
......
......@@ -584,7 +584,8 @@ def sort_by_field(boxlist, field, order=SortOrder.descend, scope=None):
['Incorrect field size: actual vs expected.', num_entries, num_boxes])
with tf.control_dependencies([length_assert]):
# TODO: Remove with tf.device when top_k operation runs correctly on GPU.
# TODO: Remove with tf.device when top_k operation runs
# correctly on GPU.
with tf.device('/cpu:0'):
_, sorted_indices = tf.nn.top_k(field_to_sort, num_boxes, sorted=True)
......@@ -655,7 +656,7 @@ def filter_greater_than(boxlist, thresh, scope=None):
This op keeps the collection of boxes whose corresponding scores are
greater than the input threshold.
TODO: Change function name to FilterScoresGreaterThan
TODO: Change function name to filter_scores_greater_than
Args:
boxlist: BoxList holding N boxes. Must contain a 'scores' field
......@@ -772,18 +773,25 @@ def to_normalized_coordinates(boxlist, height, width,
return scale(boxlist, 1 / height, 1 / width)
def to_absolute_coordinates(boxlist, height, width,
check_range=True, scope=None):
def to_absolute_coordinates(boxlist,
height,
width,
check_range=True,
maximum_normalized_coordinate=1.01,
scope=None):
"""Converts normalized box coordinates to absolute pixel coordinates.
This function raises an assertion failed error when the maximum box coordinate
value is larger than 1.01 (in which case coordinates are already absolute).
value is larger than maximum_normalized_coordinate (in which case coordinates
are already absolute).
Args:
boxlist: BoxList with coordinates in range [0, 1].
height: Maximum value for height of absolute box coordinates.
width: Maximum value for width of absolute box coordinates.
check_range: If True, checks if the coordinates are normalized or not.
maximum_normalized_coordinate: Maximum coordinate value to be considered
as normalized, default to 1.01.
scope: name scope.
Returns:
......@@ -797,9 +805,10 @@ def to_absolute_coordinates(boxlist, height, width,
# Ensure range of input boxes is correct.
if check_range:
box_maximum = tf.reduce_max(boxlist.get())
max_assert = tf.Assert(tf.greater_equal(1.01, box_maximum),
['maximum box coordinate value is larger '
'than 1.01: ', box_maximum])
max_assert = tf.Assert(
tf.greater_equal(maximum_normalized_coordinate, box_maximum),
['maximum box coordinate value is larger '
'than %f: ' % maximum_normalized_coordinate, box_maximum])
with tf.control_dependencies([max_assert]):
width = tf.identity(width)
......@@ -927,9 +936,9 @@ def box_voting(selected_boxes, pool_boxes, iou_thresh=0.5):
iou_ = iou(selected_boxes, pool_boxes)
match_indicator = tf.to_float(tf.greater(iou_, iou_thresh))
num_matches = tf.reduce_sum(match_indicator, 1)
# TODO: Handle the case where some boxes in selected_boxes do not match to any
# boxes in pool_boxes. For such boxes without any matches, we should return
# the original boxes without voting.
# TODO: Handle the case where some boxes in selected_boxes do not
# match to any boxes in pool_boxes. For such boxes without any matches, we
# should return the original boxes without voting.
match_assert = tf.Assert(
tf.reduce_all(tf.greater(num_matches, 0)),
['Each box in selected_boxes must match with at least one box '
......
......@@ -278,6 +278,8 @@ class MaskRCNNBoxPredictor(BoxPredictor):
box_code_size,
conv_hyperparams=None,
predict_instance_masks=False,
mask_height=14,
mask_width=14,
mask_prediction_conv_depth=256,
predict_keypoints=False):
"""Constructor.
......@@ -300,6 +302,8 @@ class MaskRCNNBoxPredictor(BoxPredictor):
ops.
predict_instance_masks: Whether to predict object masks inside detection
boxes.
mask_height: Desired output mask height. The default value is 14.
mask_width: Desired output mask width. The default value is 14.
mask_prediction_conv_depth: The depth for the first conv2d_transpose op
applied to the image_features in the mask prediciton branch.
predict_keypoints: Whether to predict keypoints insde detection boxes.
......@@ -315,10 +319,10 @@ class MaskRCNNBoxPredictor(BoxPredictor):
self._dropout_keep_prob = dropout_keep_prob
self._conv_hyperparams = conv_hyperparams
self._predict_instance_masks = predict_instance_masks
self._mask_height = mask_height
self._mask_width = mask_width
self._mask_prediction_conv_depth = mask_prediction_conv_depth
self._predict_keypoints = predict_keypoints
if self._predict_instance_masks:
raise ValueError('Mask prediction is unimplemented.')
if self._predict_keypoints:
raise ValueError('Keypoint prediction is unimplemented.')
if ((self._predict_instance_masks or self._predict_keypoints) and
......@@ -339,6 +343,11 @@ class MaskRCNNBoxPredictor(BoxPredictor):
have been folded into the batch dimension. Thus we output 1 for the
anchors dimension.
Also optionally predicts instance masks.
The mask prediction head is based on the Mask RCNN paper with the following
modifications: We replace the deconvolution layer with a bilinear resize
and a convolution.
Args:
image_features: A float tensor of shape [batch_size, height, width,
channels] containing features for a batch of images.
......@@ -397,15 +406,18 @@ class MaskRCNNBoxPredictor(BoxPredictor):
if self._predict_instance_masks:
with slim.arg_scope(self._conv_hyperparams):
upsampled_features = slim.conv2d_transpose(
upsampled_features = tf.image.resize_bilinear(
image_features,
[self._mask_height, self._mask_width],
align_corners=True)
upsampled_features = slim.conv2d(
upsampled_features,
num_outputs=self._mask_prediction_conv_depth,
kernel_size=[2, 2],
stride=2)
kernel_size=[2, 2])
mask_predictions = slim.conv2d(upsampled_features,
num_outputs=self.num_classes,
activation_fn=None,
kernel_size=[1, 1])
kernel_size=[3, 3])
instance_masks = tf.expand_dims(tf.transpose(mask_predictions,
perm=[0, 3, 1, 2]),
axis=1,
......@@ -437,7 +449,8 @@ class ConvolutionalBoxPredictor(BoxPredictor):
dropout_keep_prob,
kernel_size,
box_code_size,
apply_sigmoid_to_scores=False):
apply_sigmoid_to_scores=False,
class_prediction_bias_init=0.0):
"""Constructor.
Args:
......@@ -464,6 +477,8 @@ class ConvolutionalBoxPredictor(BoxPredictor):
box_code_size: Size of encoding for each box.
apply_sigmoid_to_scores: if True, apply the sigmoid on the output
class_predictions.
class_prediction_bias_init: constant value to initialize bias of the last
conv2d layer before class prediction.
Raises:
ValueError: if min_depth > max_depth.
......@@ -480,6 +495,7 @@ class ConvolutionalBoxPredictor(BoxPredictor):
self._box_code_size = box_code_size
self._dropout_keep_prob = dropout_keep_prob
self._apply_sigmoid_to_scores = apply_sigmoid_to_scores
self._class_prediction_bias_init = class_prediction_bias_init
def _predict(self, image_features, num_predictions_per_location):
"""Computes encoded object locations and corresponding confidences.
......@@ -499,15 +515,16 @@ class ConvolutionalBoxPredictor(BoxPredictor):
[batch_size, num_anchors, num_classes + 1] representing the class
predictions for the proposals.
"""
features_depth = static_shape.get_depth(image_features.get_shape())
depth = max(min(features_depth, self._max_depth), self._min_depth)
# Add a slot for the background class.
num_class_slots = self.num_classes + 1
net = image_features
with slim.arg_scope(self._conv_hyperparams), \
slim.arg_scope([slim.dropout], is_training=self._is_training):
# Add additional conv layers before the predictor.
# Add additional conv layers before the class predictor.
features_depth = static_shape.get_depth(image_features.get_shape())
depth = max(min(features_depth, self._max_depth), self._min_depth)
tf.logging.info('depth of additional conv before box predictor: {}'.
format(depth))
if depth > 0 and self._num_layers_before_predictor > 0:
for i in range(self._num_layers_before_predictor):
net = slim.conv2d(
......@@ -522,7 +539,9 @@ class ConvolutionalBoxPredictor(BoxPredictor):
net = slim.dropout(net, keep_prob=self._dropout_keep_prob)
class_predictions_with_background = slim.conv2d(
net, num_predictions_per_location * num_class_slots,
[self._kernel_size, self._kernel_size], scope='ClassPredictor')
[self._kernel_size, self._kernel_size], scope='ClassPredictor',
biases_initializer=tf.constant_initializer(
self._class_prediction_bias_init))
if self._apply_sigmoid_to_scores:
class_predictions_with_background = tf.sigmoid(
class_predictions_with_background)
......
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Interface for data parsers.
Data parser parses input data and returns a dictionary of numpy arrays
keyed by the entries in standard_fields.py. Since the parser parses records
to numpy arrays (materialized tensors) directly, it is used to read data for
evaluation/visualization; to parse the data during training, DataDecoder should
be used.
"""
from abc import ABCMeta
from abc import abstractmethod
class DataToNumpyParser(object):
__metaclass__ = ABCMeta
@abstractmethod
def parse(self, input_data):
"""Parses input and returns a numpy array or a dictionary of numpy arrays.
Args:
input_data: an input data
Returns:
A numpy array or a dictionary of numpy arrays or None, if input
cannot be parsed.
"""
pass
......@@ -229,3 +229,54 @@ def flip_horizontal(keypoints, flip_point, flip_permutation, scope=None):
new_keypoints = tf.concat([v, u], 2)
new_keypoints = tf.transpose(new_keypoints, [1, 0, 2])
return new_keypoints
def flip_vertical(keypoints, flip_point, flip_permutation, scope=None):
"""Flips the keypoints vertically around the flip_point.
This operation flips the y coordinate for each keypoint around the flip_point
and also permutes the keypoints in a manner specified by flip_permutation.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
flip_point: (float) scalar tensor representing the y coordinate to flip the
keypoints around.
flip_permutation: rank 1 int32 tensor containing the keypoint flip
permutation. This specifies the mapping from original keypoint indices
to the flipped keypoint indices. This is used primarily for keypoints
that are not reflection invariant. E.g. Suppose there are 3 keypoints
representing ['head', 'right_eye', 'left_eye'], then a logical choice for
flip_permutation might be [0, 2, 1] since we want to swap the 'left_eye'
and 'right_eye' after a horizontal flip.
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
with tf.name_scope(scope, 'FlipVertical'):
keypoints = tf.transpose(keypoints, [1, 0, 2])
keypoints = tf.gather(keypoints, flip_permutation)
v, u = tf.split(value=keypoints, num_or_size_splits=2, axis=2)
v = flip_point * 2.0 - v
new_keypoints = tf.concat([v, u], 2)
new_keypoints = tf.transpose(new_keypoints, [1, 0, 2])
return new_keypoints
def rot90(keypoints, scope=None):
"""Rotates the keypoints counter-clockwise by 90 degrees.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
with tf.name_scope(scope, 'Rot90'):
keypoints = tf.transpose(keypoints, [1, 0, 2])
v, u = tf.split(value=keypoints[:, :, ::-1], num_or_size_splits=2, axis=2)
v = 1.0 - v
new_keypoints = tf.concat([v, u], 2)
new_keypoints = tf.transpose(new_keypoints, [1, 0, 2])
return new_keypoints
......@@ -163,6 +163,38 @@ class KeypointOpsTest(tf.test.TestCase):
output_, expected_keypoints_ = sess.run([output, expected_keypoints])
self.assertAllClose(output_, expected_keypoints_)
def test_flip_vertical(self):
keypoints = tf.constant([
[[0.1, 0.1], [0.2, 0.2], [0.3, 0.3]],
[[0.4, 0.4], [0.5, 0.5], [0.6, 0.6]]
])
flip_permutation = [0, 2, 1]
expected_keypoints = tf.constant([
[[0.9, 0.1], [0.7, 0.3], [0.8, 0.2]],
[[0.6, 0.4], [0.4, 0.6], [0.5, 0.5]],
])
output = keypoint_ops.flip_vertical(keypoints, 0.5, flip_permutation)
with self.test_session() as sess:
output_, expected_keypoints_ = sess.run([output, expected_keypoints])
self.assertAllClose(output_, expected_keypoints_)
def test_rot90(self):
keypoints = tf.constant([
[[0.1, 0.1], [0.2, 0.2], [0.3, 0.3]],
[[0.4, 0.6], [0.5, 0.6], [0.6, 0.7]]
])
expected_keypoints = tf.constant([
[[0.9, 0.1], [0.8, 0.2], [0.7, 0.3]],
[[0.4, 0.4], [0.4, 0.5], [0.3, 0.6]],
])
output = keypoint_ops.rot90(keypoints)
with self.test_session() as sess:
output_, expected_keypoints_ = sess.run([output, expected_keypoints])
self.assertAllClose(output_, expected_keypoints_)
if __name__ == '__main__':
tf.test.main()
......@@ -72,7 +72,7 @@ class Loss(object):
@abstractmethod
def _compute_loss(self, prediction_tensor, target_tensor, **params):
"""Method to be overriden by implementations.
"""Method to be overridden by implementations.
Args:
prediction_tensor: a tensor representing predicted quantities
......@@ -238,17 +238,85 @@ class WeightedSigmoidClassificationLoss(Loss):
return tf.reduce_sum(per_entry_cross_ent * weights)
class SigmoidFocalClassificationLoss(Loss):
"""Sigmoid focal cross entropy loss.
Focal loss down-weights well classified examples and focusses on the hard
examples. See https://arxiv.org/pdf/1708.02002.pdf for the loss definition.
"""
def __init__(self, anchorwise_output=False, gamma=2.0, alpha=0.25):
"""Constructor.
Args:
anchorwise_output: Outputs loss per anchor. (default False)
gamma: exponent of the modulating factor (1 - p_t) ^ gamma.
alpha: optional alpha weighting factor to balance positives vs negatives.
"""
self._anchorwise_output = anchorwise_output
self._alpha = alpha
self._gamma = gamma
def _compute_loss(self,
prediction_tensor,
target_tensor,
weights,
class_indices=None):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing the predicted logits for each class
target_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing one-hot encoded classification targets
weights: a float tensor of shape [batch_size, num_anchors]
class_indices: (Optional) A 1-D integer tensor of class indices.
If provided, computes loss only for the specified class indices.
Returns:
loss: a (scalar) tensor representing the value of the loss function
or a float tensor of shape [batch_size, num_anchors]
"""
weights = tf.expand_dims(weights, 2)
if class_indices is not None:
weights *= tf.reshape(
ops.indices_to_dense_vector(class_indices,
tf.shape(prediction_tensor)[2]),
[1, 1, -1])
per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits(
labels=target_tensor, logits=prediction_tensor))
prediction_probabilities = tf.sigmoid(prediction_tensor)
p_t = ((target_tensor * prediction_probabilities) +
((1 - target_tensor) * (1 - prediction_probabilities)))
modulating_factor = 1.0
if self._gamma:
modulating_factor = tf.pow(1.0 - p_t, self._gamma)
alpha_weight_factor = 1.0
if self._alpha is not None:
alpha_weight_factor = (target_tensor * self._alpha +
(1 - target_tensor) * (1 - self._alpha))
focal_cross_entropy_loss = (modulating_factor * alpha_weight_factor *
per_entry_cross_ent)
if self._anchorwise_output:
return tf.reduce_sum(focal_cross_entropy_loss * weights, 2)
return tf.reduce_sum(focal_cross_entropy_loss * weights)
class WeightedSoftmaxClassificationLoss(Loss):
"""Softmax loss function."""
def __init__(self, anchorwise_output=False):
def __init__(self, anchorwise_output=False, logit_scale=1.0):
"""Constructor.
Args:
anchorwise_output: Whether to output loss per anchor (default False)
logit_scale: When this value is high, the prediction is "diffused" and
when this value is low, the prediction is made peakier.
(default 1.0)
"""
self._anchorwise_output = anchorwise_output
self._logit_scale = logit_scale
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
......@@ -264,6 +332,8 @@ class WeightedSoftmaxClassificationLoss(Loss):
loss: a (scalar) tensor representing the value of the loss function
"""
num_classes = prediction_tensor.get_shape().as_list()[-1]
prediction_tensor = tf.divide(
prediction_tensor, self._logit_scale, name='scale_logit')
per_row_cross_ent = (tf.nn.softmax_cross_entropy_with_logits(
labels=tf.reshape(target_tensor, [-1, num_classes]),
logits=tf.reshape(prediction_tensor, [-1, num_classes])))
......
......@@ -225,6 +225,286 @@ class WeightedSigmoidClassificationLossTest(tf.test.TestCase):
self.assertAllClose(loss_output, exp_loss)
def _logit(probability):
return math.log(probability / (1. - probability))
class SigmoidFocalClassificationLossTest(tf.test.TestCase):
def testEasyExamplesProduceSmallLossComparedToSigmoidXEntropy(self):
prediction_tensor = tf.constant([[[_logit(0.97)],
[_logit(0.90)],
[_logit(0.73)],
[_logit(0.27)],
[_logit(0.09)],
[_logit(0.03)]]], tf.float32)
target_tensor = tf.constant([[[1],
[1],
[1],
[0],
[0],
[0]]], tf.float32)
weights = tf.constant([[1, 1, 1, 1, 1, 1]], tf.float32)
focal_loss_op = losses.SigmoidFocalClassificationLoss(
anchorwise_output=True, gamma=2.0, alpha=None)
sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
anchorwise_output=True)
focal_loss = focal_loss_op(prediction_tensor, target_tensor,
weights=weights)
sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
weights=weights)
with self.test_session() as sess:
sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
order_of_ratio = np.power(10,
np.floor(np.log10(sigmoid_loss / focal_loss)))
self.assertAllClose(order_of_ratio, [[1000, 100, 10, 10, 100, 1000]])
def testHardExamplesProduceLossComparableToSigmoidXEntropy(self):
prediction_tensor = tf.constant([[[_logit(0.55)],
[_logit(0.52)],
[_logit(0.50)],
[_logit(0.48)],
[_logit(0.45)]]], tf.float32)
target_tensor = tf.constant([[[1],
[1],
[1],
[0],
[0]]], tf.float32)
weights = tf.constant([[1, 1, 1, 1, 1]], tf.float32)
focal_loss_op = losses.SigmoidFocalClassificationLoss(
anchorwise_output=True, gamma=2.0, alpha=None)
sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
anchorwise_output=True)
focal_loss = focal_loss_op(prediction_tensor, target_tensor,
weights=weights)
sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
weights=weights)
with self.test_session() as sess:
sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
order_of_ratio = np.power(10,
np.floor(np.log10(sigmoid_loss / focal_loss)))
self.assertAllClose(order_of_ratio, [[1., 1., 1., 1., 1.]])
def testNonAnchorWiseOutputComparableToSigmoidXEntropy(self):
prediction_tensor = tf.constant([[[_logit(0.55)],
[_logit(0.52)],
[_logit(0.50)],
[_logit(0.48)],
[_logit(0.45)]]], tf.float32)
target_tensor = tf.constant([[[1],
[1],
[1],
[0],
[0]]], tf.float32)
weights = tf.constant([[1, 1, 1, 1, 1]], tf.float32)
focal_loss_op = losses.SigmoidFocalClassificationLoss(
anchorwise_output=False, gamma=2.0, alpha=None)
sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
anchorwise_output=False)
focal_loss = focal_loss_op(prediction_tensor, target_tensor,
weights=weights)
sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
weights=weights)
with self.test_session() as sess:
sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
order_of_ratio = np.power(10,
np.floor(np.log10(sigmoid_loss / focal_loss)))
self.assertAlmostEqual(order_of_ratio, 1.)
def testIgnoreNegativeExampleLossViaAlphaMultiplier(self):
prediction_tensor = tf.constant([[[_logit(0.55)],
[_logit(0.52)],
[_logit(0.50)],
[_logit(0.48)],
[_logit(0.45)]]], tf.float32)
target_tensor = tf.constant([[[1],
[1],
[1],
[0],
[0]]], tf.float32)
weights = tf.constant([[1, 1, 1, 1, 1]], tf.float32)
focal_loss_op = losses.SigmoidFocalClassificationLoss(
anchorwise_output=True, gamma=2.0, alpha=1.0)
sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
anchorwise_output=True)
focal_loss = focal_loss_op(prediction_tensor, target_tensor,
weights=weights)
sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
weights=weights)
with self.test_session() as sess:
sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
self.assertAllClose(focal_loss[0][3:], [0., 0.])
order_of_ratio = np.power(10,
np.floor(np.log10(sigmoid_loss[0][:3] /
focal_loss[0][:3])))
self.assertAllClose(order_of_ratio, [1., 1., 1.])
def testIgnorePositiveExampleLossViaAlphaMultiplier(self):
prediction_tensor = tf.constant([[[_logit(0.55)],
[_logit(0.52)],
[_logit(0.50)],
[_logit(0.48)],
[_logit(0.45)]]], tf.float32)
target_tensor = tf.constant([[[1],
[1],
[1],
[0],
[0]]], tf.float32)
weights = tf.constant([[1, 1, 1, 1, 1]], tf.float32)
focal_loss_op = losses.SigmoidFocalClassificationLoss(
anchorwise_output=True, gamma=2.0, alpha=0.0)
sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
anchorwise_output=True)
focal_loss = focal_loss_op(prediction_tensor, target_tensor,
weights=weights)
sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
weights=weights)
with self.test_session() as sess:
sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
self.assertAllClose(focal_loss[0][:3], [0., 0., 0.])
order_of_ratio = np.power(10,
np.floor(np.log10(sigmoid_loss[0][3:] /
focal_loss[0][3:])))
self.assertAllClose(order_of_ratio, [1., 1.])
def testSimilarToSigmoidXEntropyWithHalfAlphaAndZeroGammaUpToAScale(self):
prediction_tensor = tf.constant([[[-100, 100, -100],
[100, -100, -100],
[100, 0, -100],
[-100, -100, 100]],
[[-100, 0, 100],
[-100, 100, -100],
[100, 100, 100],
[0, 0, -1]]], tf.float32)
target_tensor = tf.constant([[[0, 1, 0],
[1, 0, 0],
[1, 0, 0],
[0, 0, 1]],
[[0, 0, 1],
[0, 1, 0],
[1, 1, 1],
[1, 0, 0]]], tf.float32)
weights = tf.constant([[1, 1, 1, 1],
[1, 1, 1, 0]], tf.float32)
focal_loss_op = losses.SigmoidFocalClassificationLoss(
anchorwise_output=True, alpha=0.5, gamma=0.0)
sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
anchorwise_output=True)
focal_loss = focal_loss_op(prediction_tensor, target_tensor,
weights=weights)
sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
weights=weights)
with self.test_session() as sess:
sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
self.assertAllClose(sigmoid_loss, focal_loss * 2)
def testSameAsSigmoidXEntropyWithNoAlphaAndZeroGamma(self):
prediction_tensor = tf.constant([[[-100, 100, -100],
[100, -100, -100],
[100, 0, -100],
[-100, -100, 100]],
[[-100, 0, 100],
[-100, 100, -100],
[100, 100, 100],
[0, 0, -1]]], tf.float32)
target_tensor = tf.constant([[[0, 1, 0],
[1, 0, 0],
[1, 0, 0],
[0, 0, 1]],
[[0, 0, 1],
[0, 1, 0],
[1, 1, 1],
[1, 0, 0]]], tf.float32)
weights = tf.constant([[1, 1, 1, 1],
[1, 1, 1, 0]], tf.float32)
focal_loss_op = losses.SigmoidFocalClassificationLoss(
anchorwise_output=True, alpha=None, gamma=0.0)
sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
anchorwise_output=True)
focal_loss = focal_loss_op(prediction_tensor, target_tensor,
weights=weights)
sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
weights=weights)
with self.test_session() as sess:
sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
self.assertAllClose(sigmoid_loss, focal_loss)
def testExpectedLossWithAlphaOneAndZeroGamma(self):
# All zeros correspond to 0.5 probability.
prediction_tensor = tf.constant([[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]], tf.float32)
target_tensor = tf.constant([[[0, 1, 0],
[1, 0, 0],
[1, 0, 0],
[0, 0, 1]],
[[0, 0, 1],
[0, 1, 0],
[1, 0, 0],
[1, 0, 0]]], tf.float32)
weights = tf.constant([[1, 1, 1, 1],
[1, 1, 1, 1]], tf.float32)
focal_loss_op = losses.SigmoidFocalClassificationLoss(
anchorwise_output=False, alpha=1.0, gamma=0.0)
focal_loss = focal_loss_op(prediction_tensor, target_tensor,
weights=weights)
with self.test_session() as sess:
focal_loss = sess.run(focal_loss)
self.assertAllClose(
(-math.log(.5) * # x-entropy per class per anchor
1.0 * # alpha
8), # positives from 8 anchors
focal_loss)
def testExpectedLossWithAlpha75AndZeroGamma(self):
# All zeros correspond to 0.5 probability.
prediction_tensor = tf.constant([[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]], tf.float32)
target_tensor = tf.constant([[[0, 1, 0],
[1, 0, 0],
[1, 0, 0],
[0, 0, 1]],
[[0, 0, 1],
[0, 1, 0],
[1, 0, 0],
[1, 0, 0]]], tf.float32)
weights = tf.constant([[1, 1, 1, 1],
[1, 1, 1, 1]], tf.float32)
focal_loss_op = losses.SigmoidFocalClassificationLoss(
anchorwise_output=False, alpha=0.75, gamma=0.0)
focal_loss = focal_loss_op(prediction_tensor, target_tensor,
weights=weights)
with self.test_session() as sess:
focal_loss = sess.run(focal_loss)
self.assertAllClose(
(-math.log(.5) * # x-entropy per class per anchor.
((0.75 * # alpha for positives.
8) + # positives from 8 anchors.
(0.25 * # alpha for negatives.
8 * 2))), # negatives from 8 anchors for two classes.
focal_loss)
class WeightedSoftmaxClassificationLossTest(tf.test.TestCase):
def testReturnsCorrectLoss(self):
......@@ -282,6 +562,39 @@ class WeightedSoftmaxClassificationLossTest(tf.test.TestCase):
loss_output = sess.run(loss)
self.assertAllClose(loss_output, exp_loss)
def testReturnsCorrectAnchorWiseLossWithHighLogitScaleSetting(self):
"""At very high logit_scale, all predictions will be ~0.33."""
# TODO(yonib): Also test logit_scale with anchorwise=False.
logit_scale = 10e16
prediction_tensor = tf.constant([[[-100, 100, -100],
[100, -100, -100],
[0, 0, -100],
[-100, -100, 100]],
[[-100, 0, 0],
[-100, 100, -100],
[-100, 100, -100],
[100, -100, -100]]], tf.float32)
target_tensor = tf.constant([[[0, 1, 0],
[1, 0, 0],
[1, 0, 0],
[0, 0, 1]],
[[0, 0, 1],
[0, 1, 0],
[0, 1, 0],
[1, 0, 0]]], tf.float32)
weights = tf.constant([[1, 1, 1, 1],
[1, 1, 1, 1]], tf.float32)
loss_op = losses.WeightedSoftmaxClassificationLoss(
anchorwise_output=True, logit_scale=logit_scale)
loss = loss_op(prediction_tensor, target_tensor, weights=weights)
uniform_distribution_loss = - math.log(.33333333333)
exp_loss = np.matrix([[uniform_distribution_loss] * 4,
[uniform_distribution_loss] * 4])
with self.test_session() as sess:
loss_output = sess.run(loss)
self.assertAllClose(loss_output, exp_loss)
class BootstrappedSigmoidClassificationLossTest(tf.test.TestCase):
......
......@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Abstract detection model.
This file defines a generic base class for detection models. Programs that are
......@@ -87,6 +86,18 @@ class DetectionModel(object):
raise RuntimeError('Groundtruth tensor %s has not been provided', field)
return self._groundtruth_lists[field]
def groundtruth_has_field(self, field):
"""Determines whether the groundtruth includes the given field.
Args:
field: a string key, options are
fields.BoxListFields.{boxes,classes,masks,keypoints}
Returns:
True if the groundtruth includes the given field, False otherwise.
"""
return field in self._groundtruth_lists
@abstractmethod
def preprocess(self, inputs):
"""Input preprocessing.
......@@ -148,7 +159,8 @@ class DetectionModel(object):
Outputs adhere to the following conventions:
* Classes are integers in [0, num_classes); background classes are removed
and the first non-background class is mapped to 0.
and the first non-background class is mapped to 0. If the model produces
class-agnostic detections, then no output is produced for classes.
* Boxes are to be interpreted as being in [y_min, x_min, y_max, x_max]
format and normalized relative to the image window.
* `num_detections` is provided for settings where detections are padded to a
......@@ -168,6 +180,8 @@ class DetectionModel(object):
detection_boxes: [batch, max_detections, 4]
detection_scores: [batch, max_detections]
detection_classes: [batch, max_detections]
(If a model is producing class-agnostic detections, this field may be
missing)
instance_masks: [batch, max_detections, image_height, image_width]
(optional)
keypoints: [batch, max_detections, num_keypoints, 2] (optional)
......@@ -207,13 +221,13 @@ class DetectionModel(object):
groundtruth_classes_list: a list of 2-D tf.float32 one-hot (or k-hot)
tensors of shape [num_boxes, num_classes] containing the class targets
with the 0th index assumed to map to the first non-background class.
groundtruth_masks_list: a list of 2-D tf.float32 tensors of
shape [max_detections, height_in, width_in] containing instance
groundtruth_masks_list: a list of 3-D tf.float32 tensors of
shape [num_boxes, height_in, width_in] containing instance
masks with values in {0, 1}. If None, no masks are provided.
Mask resolution `height_in`x`width_in` must agree with the resolution
of the input image tensor provided to the `preprocess` function.
groundtruth_keypoints_list: a list of 2-D tf.float32 tensors of
shape [batch, max_detections, num_keypoints, 2] containing keypoints.
groundtruth_keypoints_list: a list of 3-D tf.float32 tensors of
shape [num_boxes, num_keypoints, 2] containing keypoints.
Keypoints are assumed to be provided in normalized coordinates and
missing keypoints should be encoded as NaN.
"""
......
......@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Preprocess images and bounding boxes for detection.
We perform two sets of operations in preprocessing stage:
......@@ -147,28 +146,12 @@ def normalize_image(image, original_minval, original_maxval, target_minval,
return image
def flip_boxes(boxes):
"""Left-right flip the boxes.
Args:
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
Returns:
Flipped boxes.
"""
# Flip boxes.
ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
flipped_xmin = tf.subtract(1.0, xmax)
flipped_xmax = tf.subtract(1.0, xmin)
flipped_boxes = tf.concat([ymin, flipped_xmin, ymax, flipped_xmax], 1)
return flipped_boxes
def retain_boxes_above_threshold(
boxes, labels, label_scores, masks=None, keypoints=None, threshold=0.0):
def retain_boxes_above_threshold(boxes,
labels,
label_scores,
masks=None,
keypoints=None,
threshold=0.0):
"""Retains boxes whose label score is above a given threshold.
If the label score for a box is missing (represented by NaN), the box is
......@@ -221,8 +204,68 @@ def retain_boxes_above_threshold(
return result
def _flip_masks(masks):
"""Left-right flips masks.
def _flip_boxes_left_right(boxes):
"""Left-right flip the boxes.
Args:
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
Returns:
Flipped boxes.
"""
ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
flipped_xmin = tf.subtract(1.0, xmax)
flipped_xmax = tf.subtract(1.0, xmin)
flipped_boxes = tf.concat([ymin, flipped_xmin, ymax, flipped_xmax], 1)
return flipped_boxes
def _flip_boxes_up_down(boxes):
"""Up-down flip the boxes.
Args:
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
Returns:
Flipped boxes.
"""
ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
flipped_ymin = tf.subtract(1.0, ymax)
flipped_ymax = tf.subtract(1.0, ymin)
flipped_boxes = tf.concat([flipped_ymin, xmin, flipped_ymax, xmax], 1)
return flipped_boxes
def _rot90_boxes(boxes):
"""Rotate boxes counter-clockwise by 90 degrees.
Args:
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
Returns:
Rotated boxes.
"""
ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
rotated_ymin = tf.subtract(1.0, xmax)
rotated_ymax = tf.subtract(1.0, xmin)
rotated_xmin = ymin
rotated_xmax = ymax
rotated_boxes = tf.concat(
[rotated_ymin, rotated_xmin, rotated_ymax, rotated_xmax], 1)
return rotated_boxes
def _flip_masks_left_right(masks):
"""Left-right flip masks.
Args:
masks: rank 3 float32 tensor with shape
......@@ -235,14 +278,42 @@ def _flip_masks(masks):
return masks[:, :, ::-1]
def random_horizontal_flip(
image,
boxes=None,
masks=None,
keypoints=None,
keypoint_flip_permutation=None,
seed=None):
"""Randomly decides whether to mirror the image and detections or not.
def _flip_masks_up_down(masks):
"""Up-down flip masks.
Args:
masks: rank 3 float32 tensor with shape
[num_instances, height, width] representing instance masks.
Returns:
flipped masks: rank 3 float32 tensor with shape
[num_instances, height, width] representing instance masks.
"""
return masks[:, ::-1, :]
def _rot90_masks(masks):
"""Rotate masks counter-clockwise by 90 degrees.
Args:
masks: rank 3 float32 tensor with shape
[num_instances, height, width] representing instance masks.
Returns:
rotated masks: rank 3 float32 tensor with shape
[num_instances, height, width] representing instance masks.
"""
masks = tf.transpose(masks, [0, 2, 1])
return masks[:, ::-1, :]
def random_horizontal_flip(image,
boxes=None,
masks=None,
keypoints=None,
keypoint_flip_permutation=None,
seed=None):
"""Randomly flips the image and detections horizontally.
The probability of flipping the image is 50%.
......@@ -259,14 +330,14 @@ def random_horizontal_flip(
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
keypoint_flip_permutation: rank 1 int32 tensor containing keypoint flip
keypoint_flip_permutation: rank 1 int32 tensor containing the keypoint flip
permutation.
seed: random seed
Returns:
image: image which is the same shape as input image.
If boxes, masks, keypoints, and keypoint_flip_permutation is not None,
If boxes, masks, keypoints, and keypoint_flip_permutation are not None,
the function also returns the following tensors.
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
......@@ -280,6 +351,7 @@ def random_horizontal_flip(
Raises:
ValueError: if keypoints are provided but keypoint_flip_permutation is not.
"""
def _flip_image(image):
# flip image
image_flipped = tf.image.flip_left_right(image)
......@@ -292,10 +364,7 @@ def random_horizontal_flip(
with tf.name_scope('RandomHorizontalFlip', values=[image, boxes]):
result = []
# random variable defining whether to do flip or not
do_a_flip_random = tf.random_uniform([], seed=seed)
# flip only if there are bounding boxes in image!
do_a_flip_random = tf.logical_and(
tf.greater(tf.size(boxes), 0), tf.greater(do_a_flip_random, 0.5))
do_a_flip_random = tf.greater(tf.random_uniform([], seed=seed), 0.5)
# flip image
image = tf.cond(do_a_flip_random, lambda: _flip_image(image), lambda: image)
......@@ -303,14 +372,14 @@ def random_horizontal_flip(
# flip boxes
if boxes is not None:
boxes = tf.cond(
do_a_flip_random, lambda: flip_boxes(boxes), lambda: boxes)
boxes = tf.cond(do_a_flip_random, lambda: _flip_boxes_left_right(boxes),
lambda: boxes)
result.append(boxes)
# flip masks
if masks is not None:
masks = tf.cond(
do_a_flip_random, lambda: _flip_masks(masks), lambda: masks)
masks = tf.cond(do_a_flip_random, lambda: _flip_masks_left_right(masks),
lambda: masks)
result.append(masks)
# flip keypoints
......@@ -325,6 +394,174 @@ def random_horizontal_flip(
return tuple(result)
def random_vertical_flip(image,
boxes=None,
masks=None,
keypoints=None,
keypoint_flip_permutation=None,
seed=None):
"""Randomly flips the image and detections vertically.
The probability of flipping the image is 50%.
Args:
image: rank 3 float32 tensor with shape [height, width, channels].
boxes: (optional) rank 2 float32 tensor with shape [N, 4]
containing the bounding boxes.
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
keypoint_flip_permutation: rank 1 int32 tensor containing the keypoint flip
permutation.
seed: random seed
Returns:
image: image which is the same shape as input image.
If boxes, masks, keypoints, and keypoint_flip_permutation are not None,
the function also returns the following tensors.
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
Raises:
ValueError: if keypoints are provided but keypoint_flip_permutation is not.
"""
def _flip_image(image):
# flip image
image_flipped = tf.image.flip_up_down(image)
return image_flipped
if keypoints is not None and keypoint_flip_permutation is None:
raise ValueError(
'keypoints are provided but keypoints_flip_permutation is not provided')
with tf.name_scope('RandomVerticalFlip', values=[image, boxes]):
result = []
# random variable defining whether to do flip or not
do_a_flip_random = tf.greater(tf.random_uniform([], seed=seed), 0.5)
# flip image
image = tf.cond(do_a_flip_random, lambda: _flip_image(image), lambda: image)
result.append(image)
# flip boxes
if boxes is not None:
boxes = tf.cond(do_a_flip_random, lambda: _flip_boxes_up_down(boxes),
lambda: boxes)
result.append(boxes)
# flip masks
if masks is not None:
masks = tf.cond(do_a_flip_random, lambda: _flip_masks_up_down(masks),
lambda: masks)
result.append(masks)
# flip keypoints
if keypoints is not None and keypoint_flip_permutation is not None:
permutation = keypoint_flip_permutation
keypoints = tf.cond(
do_a_flip_random,
lambda: keypoint_ops.flip_vertical(keypoints, 0.5, permutation),
lambda: keypoints)
result.append(keypoints)
return tuple(result)
def random_rotation90(image,
boxes=None,
masks=None,
keypoints=None,
seed=None):
"""Randomly rotates the image and detections 90 degrees counter-clockwise.
The probability of rotating the image is 50%. This can be combined with
random_horizontal_flip and random_vertical_flip to produce an output with a
uniform distribution of the eight possible 90 degree rotation / reflection
combinations.
Args:
image: rank 3 float32 tensor with shape [height, width, channels].
boxes: (optional) rank 2 float32 tensor with shape [N, 4]
containing the bounding boxes.
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
seed: random seed
Returns:
image: image which is the same shape as input image.
If boxes, masks, and keypoints, are not None,
the function also returns the following tensors.
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
"""
def _rot90_image(image):
# flip image
image_rotated = tf.image.rot90(image)
return image_rotated
with tf.name_scope('RandomRotation90', values=[image, boxes]):
result = []
# random variable defining whether to rotate by 90 degrees or not
do_a_rot90_random = tf.greater(tf.random_uniform([], seed=seed), 0.5)
# flip image
image = tf.cond(do_a_rot90_random, lambda: _rot90_image(image),
lambda: image)
result.append(image)
# flip boxes
if boxes is not None:
boxes = tf.cond(do_a_rot90_random, lambda: _rot90_boxes(boxes),
lambda: boxes)
result.append(boxes)
# flip masks
if masks is not None:
masks = tf.cond(do_a_rot90_random, lambda: _rot90_masks(masks),
lambda: masks)
result.append(masks)
# flip keypoints
if keypoints is not None:
keypoints = tf.cond(
do_a_rot90_random,
lambda: keypoint_ops.rot90(keypoints),
lambda: keypoints)
result.append(keypoints)
return tuple(result)
def random_pixel_value_scale(image, minval=0.9, maxval=1.1, seed=None):
"""Scales each value in the pixels of the image.
......@@ -602,6 +839,7 @@ def random_jitter_boxes(boxes, ratio=0.05, seed=None):
def _strict_random_crop_image(image,
boxes,
labels,
label_scores=None,
masks=None,
keypoints=None,
min_object_covered=1.0,
......@@ -625,6 +863,8 @@ def _strict_random_crop_image(image,
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_scores: (optional) float32 tensor of shape [num_instances]
representing the score for each box.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
......@@ -645,8 +885,8 @@ def _strict_random_crop_image(image,
Boxes are in normalized form.
labels: new labels.
If masks, or keypoints is not None, the function also returns:
If label_scores, masks, or keypoints is not None, the function also returns:
label_scores: rank 1 float32 tensor with shape [num_instances].
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
......@@ -682,6 +922,9 @@ def _strict_random_crop_image(image,
boxlist = box_list.BoxList(boxes)
boxlist.add_field('labels', labels)
if label_scores is not None:
boxlist.add_field('label_scores', label_scores)
im_boxlist = box_list.BoxList(im_box_rank2)
# remove boxes that are outside cropped image
......@@ -702,6 +945,10 @@ def _strict_random_crop_image(image,
result = [new_image, new_boxes, new_labels]
if label_scores is not None:
new_label_scores = overlapping_boxlist.get_field('label_scores')
result.append(new_label_scores)
if masks is not None:
masks_of_boxes_inside_window = tf.gather(masks, inside_window_ids)
masks_of_boxes_completely_inside_window = tf.gather(
......@@ -729,6 +976,7 @@ def _strict_random_crop_image(image,
def random_crop_image(image,
boxes,
labels,
label_scores=None,
masks=None,
keypoints=None,
min_object_covered=1.0,
......@@ -761,6 +1009,8 @@ def random_crop_image(image,
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_scores: (optional) float32 tensor of shape [num_instances].
representing the score for each box.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
......@@ -786,8 +1036,9 @@ def random_crop_image(image,
form.
labels: new labels.
If masks, or keypoints are not None, the function also returns:
If label_scores, masks, or keypoints are not None, the function also
returns:
label_scores: new scores.
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
......@@ -799,6 +1050,7 @@ def random_crop_image(image,
image,
boxes,
labels,
label_scores=label_scores,
masks=masks,
keypoints=keypoints,
min_object_covered=min_object_covered,
......@@ -814,13 +1066,15 @@ def random_crop_image(image,
do_a_crop_random = tf.greater(do_a_crop_random, random_coef)
outputs = [image, boxes, labels]
if label_scores is not None:
outputs.append(label_scores)
if masks is not None:
outputs.append(masks)
if keypoints is not None:
outputs.append(keypoints)
result = tf.cond(do_a_crop_random,
strict_random_crop_image_fn,
result = tf.cond(do_a_crop_random, strict_random_crop_image_fn,
lambda: tuple(outputs))
return result
......@@ -865,7 +1119,7 @@ def random_pad_image(image,
form.
"""
if pad_color is None:
pad_color = tf.reduce_mean(image, reduction_indices=[0, 1])
pad_color = tf.reduce_mean(image, axis=[0, 1])
image_shape = tf.shape(image)
image_height = image_shape[0]
......@@ -902,16 +1156,22 @@ def random_pad_image(image,
lambda: tf.constant(0, dtype=tf.int32))
new_image = tf.image.pad_to_bounding_box(
image, offset_height=offset_height, offset_width=offset_width,
target_height=target_height, target_width=target_width)
image,
offset_height=offset_height,
offset_width=offset_width,
target_height=target_height,
target_width=target_width)
# Setting color of the padded pixels
image_ones = tf.ones_like(image)
image_ones_padded = tf.image.pad_to_bounding_box(
image_ones, offset_height=offset_height, offset_width=offset_width,
target_height=target_height, target_width=target_width)
image_color_paded = (1.0 - image_ones_padded) * pad_color
new_image += image_color_paded
image_ones,
offset_height=offset_height,
offset_width=offset_width,
target_height=target_height,
target_width=target_width)
image_color_padded = (1.0 - image_ones_padded) * pad_color
new_image += image_color_padded
# setting boxes
new_window = tf.to_float(
......@@ -931,13 +1191,14 @@ def random_pad_image(image,
def random_crop_pad_image(image,
boxes,
labels,
label_scores=None,
min_object_covered=1.0,
aspect_ratio_range=(0.75, 1.33),
area_range=(0.1, 1.0),
overlap_thresh=0.3,
random_coef=0.0,
min_padded_size_ratio=None,
max_padded_size_ratio=None,
min_padded_size_ratio=(1.0, 1.0),
max_padded_size_ratio=(2.0, 2.0),
pad_color=None,
seed=None):
"""Randomly crops and pads the image.
......@@ -960,6 +1221,7 @@ def random_crop_pad_image(image,
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_scores: rank 1 float32 containing the label scores.
min_object_covered: the cropped image must cover at least this fraction of
at least one of the input bounding boxes.
aspect_ratio_range: allowed range for aspect ratio of cropped image.
......@@ -972,11 +1234,9 @@ def random_crop_pad_image(image,
cropped image, and if it is 1.0, we will always get the
original image.
min_padded_size_ratio: min ratio of padded image height and width to the
input image's height and width. If None, it will
be set to [0.0, 0.0].
input image's height and width.
max_padded_size_ratio: max ratio of padded image height and width to the
input image's height and width. If None, it will
be set to [2.0, 2.0].
input image's height and width.
pad_color: padding color. A rank 1 tensor of [3] with dtype=tf.float32.
if set as None, it will be set to average color of the randomly
cropped image.
......@@ -987,18 +1247,17 @@ def random_crop_pad_image(image,
padded_boxes: boxes which is the same rank as input boxes. Boxes are in
normalized form.
cropped_labels: cropped labels.
if label_scores is not None also returns:
cropped_label_scores: cropped label scores.
"""
image_size = tf.shape(image)
image_height = image_size[0]
image_width = image_size[1]
if min_padded_size_ratio is None:
min_padded_size_ratio = tf.constant([0.0, 0.0], tf.float32)
if max_padded_size_ratio is None:
max_padded_size_ratio = tf.constant([2.0, 2.0], tf.float32)
cropped_image, cropped_boxes, cropped_labels = random_crop_image(
result = random_crop_image(
image=image,
boxes=boxes,
labels=labels,
label_scores=label_scores,
min_object_covered=min_object_covered,
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
......@@ -1006,6 +1265,8 @@ def random_crop_pad_image(image,
random_coef=random_coef,
seed=seed)
cropped_image, cropped_boxes, cropped_labels = result[:3]
min_image_size = tf.to_int32(
tf.to_float(tf.stack([image_height, image_width])) *
min_padded_size_ratio)
......@@ -1021,12 +1282,19 @@ def random_crop_pad_image(image,
pad_color=pad_color,
seed=seed)
return padded_image, padded_boxes, cropped_labels
cropped_padded_output = (padded_image, padded_boxes, cropped_labels)
if label_scores is not None:
cropped_label_scores = result[3]
cropped_padded_output += (cropped_label_scores,)
return cropped_padded_output
def random_crop_to_aspect_ratio(image,
boxes,
labels,
label_scores=None,
masks=None,
keypoints=None,
aspect_ratio=1.0,
......@@ -1051,6 +1319,8 @@ def random_crop_to_aspect_ratio(image,
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_scores: (optional) float32 tensor of shape [num_instances]
representing the score for each box.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
......@@ -1068,8 +1338,8 @@ def random_crop_to_aspect_ratio(image,
Boxes are in normalized form.
labels: new labels.
If masks, or keypoints is not None, the function also returns:
If label_scores, masks, or keypoints is not None, the function also returns:
label_scores: new label scores.
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
......@@ -1088,21 +1358,16 @@ def random_crop_to_aspect_ratio(image,
orig_aspect_ratio = tf.to_float(orig_width) / tf.to_float(orig_height)
new_aspect_ratio = tf.constant(aspect_ratio, dtype=tf.float32)
def target_height_fn():
return tf.to_int32(
tf.round(
tf.to_float(orig_height) * orig_aspect_ratio / new_aspect_ratio))
target_height = tf.cond(
orig_aspect_ratio >= new_aspect_ratio,
lambda: orig_height,
target_height_fn)
return tf.to_int32(tf.round(tf.to_float(orig_width) / new_aspect_ratio))
target_height = tf.cond(orig_aspect_ratio >= new_aspect_ratio,
lambda: orig_height, target_height_fn)
def target_width_fn():
return tf.to_int32(
tf.round(
tf.to_float(orig_width) * new_aspect_ratio / orig_aspect_ratio))
target_width = tf.cond(
orig_aspect_ratio <= new_aspect_ratio,
lambda: orig_width,
target_width_fn)
return tf.to_int32(tf.round(tf.to_float(orig_height) * new_aspect_ratio))
target_width = tf.cond(orig_aspect_ratio <= new_aspect_ratio,
lambda: orig_width, target_width_fn)
# either offset_height = 0 and offset_width is randomly chosen from
# [0, offset_width - target_width), or else offset_width = 0 and
......@@ -1122,6 +1387,9 @@ def random_crop_to_aspect_ratio(image,
boxlist = box_list.BoxList(boxes)
boxlist.add_field('labels', labels)
if label_scores is not None:
boxlist.add_field('label_scores', label_scores)
im_boxlist = box_list.BoxList(tf.expand_dims(im_box, 0))
# remove boxes whose overlap with the image is less than overlap_thresh
......@@ -1133,13 +1401,16 @@ def random_crop_to_aspect_ratio(image,
new_boxlist = box_list_ops.change_coordinate_frame(overlapping_boxlist,
im_box)
new_boxlist = box_list_ops.clip_to_window(new_boxlist,
tf.constant(
[0.0, 0.0, 1.0, 1.0],
tf.float32))
tf.constant([0.0, 0.0, 1.0, 1.0],
tf.float32))
new_boxes = new_boxlist.get()
result = [new_image, new_boxes, new_labels]
if label_scores is not None:
new_label_scores = overlapping_boxlist.get_field('label_scores')
result.append(new_label_scores)
if masks is not None:
masks_inside_window = tf.gather(masks, keep_ids)
masks_box_begin = tf.stack([0, offset_height, offset_width])
......@@ -1158,6 +1429,122 @@ def random_crop_to_aspect_ratio(image,
return tuple(result)
def random_pad_to_aspect_ratio(image,
boxes,
masks=None,
keypoints=None,
aspect_ratio=1.0,
min_padded_size_ratio=(1.0, 1.0),
max_padded_size_ratio=(2.0, 2.0),
seed=None):
"""Randomly zero pads an image to the specified aspect ratio.
Pads the image so that the resulting image will have the specified aspect
ratio without scaling less than the min_padded_size_ratio or more than the
max_padded_size_ratio. If the min_padded_size_ratio or max_padded_size_ratio
is lower than what is possible to maintain the aspect ratio, then this method
will use the least padding to achieve the specified aspect ratio.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
aspect_ratio: aspect ratio of the final image.
min_padded_size_ratio: min ratio of padded image height and width to the
input image's height and width.
max_padded_size_ratio: max ratio of padded image height and width to the
input image's height and width.
seed: random seed.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
If label_scores, masks, or keypoints is not None, the function also returns:
label_scores: new label scores.
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
Raises:
ValueError: If image is not a 3D tensor.
"""
if len(image.get_shape()) != 3:
raise ValueError('Image should be 3D tensor')
with tf.name_scope('RandomPadToAspectRatio', values=[image]):
image_shape = tf.shape(image)
image_height = tf.to_float(image_shape[0])
image_width = tf.to_float(image_shape[1])
image_aspect_ratio = image_width / image_height
new_aspect_ratio = tf.constant(aspect_ratio, dtype=tf.float32)
target_height = tf.cond(
image_aspect_ratio <= new_aspect_ratio,
lambda: image_height,
lambda: image_width / new_aspect_ratio)
target_width = tf.cond(
image_aspect_ratio >= new_aspect_ratio,
lambda: image_width,
lambda: image_height * new_aspect_ratio)
min_height = tf.maximum(
min_padded_size_ratio[0] * image_height, target_height)
min_width = tf.maximum(
min_padded_size_ratio[1] * image_width, target_width)
max_height = tf.maximum(
max_padded_size_ratio[0] * image_height, target_height)
max_width = tf.maximum(
max_padded_size_ratio[1] * image_width, target_width)
min_scale = tf.maximum(min_height / target_height, min_width / target_width)
max_scale = tf.minimum(max_height / target_height, max_width / target_width)
scale = tf.random_uniform([], min_scale, max_scale, seed=seed)
target_height = scale * target_height
target_width = scale * target_width
new_image = tf.image.pad_to_bounding_box(
image, 0, 0, tf.to_int32(target_height), tf.to_int32(target_width))
im_box = tf.stack([
0.0,
0.0,
target_height / image_height,
target_width / image_width
])
boxlist = box_list.BoxList(boxes)
new_boxlist = box_list_ops.change_coordinate_frame(boxlist, im_box)
new_boxes = new_boxlist.get()
result = [new_image, new_boxes]
if masks is not None:
new_masks = tf.expand_dims(masks, -1)
new_masks = tf.image.pad_to_bounding_box(new_masks, 0, 0,
tf.to_int32(target_height),
tf.to_int32(target_width))
new_masks = tf.squeeze(new_masks, [-1])
result.append(new_masks)
if keypoints is not None:
new_keypoints = keypoint_ops.change_coordinate_frame(keypoints, im_box)
result.append(new_keypoints)
return tuple(result)
def random_black_patches(image,
max_black_patches=10,
probability=0.5,
......@@ -1213,8 +1600,8 @@ def random_black_patches(image,
with tf.name_scope('RandomBlackPatchInImage', values=[image]):
for _ in range(max_black_patches):
random_prob = tf.random_uniform([], minval=0.0, maxval=1.0,
dtype=tf.float32, seed=random_seed)
random_prob = tf.random_uniform(
[], minval=0.0, maxval=1.0, dtype=tf.float32, seed=random_seed)
image = tf.cond(
tf.greater(random_prob, probability), lambda: image,
lambda: add_black_patch_to_image(image))
......@@ -1255,9 +1642,7 @@ def random_resize_method(image, target_size):
return resized_image
def _compute_new_static_size(image,
min_dimension,
max_dimension):
def _compute_new_static_size(image, min_dimension, max_dimension):
"""Compute new static shape for resize_to_range method."""
image_shape = image.get_shape().as_list()
orig_height = image_shape[0]
......@@ -1292,9 +1677,7 @@ def _compute_new_static_size(image,
return tf.constant(new_size)
def _compute_new_dynamic_size(image,
min_dimension,
max_dimension):
def _compute_new_dynamic_size(image, min_dimension, max_dimension):
"""Compute new dynamic shape for resize_to_range method."""
image_shape = tf.shape(image)
orig_height = tf.to_float(image_shape[0])
......@@ -1335,6 +1718,7 @@ def resize_to_range(image,
masks=None,
min_dimension=None,
max_dimension=None,
method=tf.image.ResizeMethod.BILINEAR,
align_corners=False):
"""Resizes an image so its dimensions are within the provided value.
......@@ -1352,6 +1736,8 @@ def resize_to_range(image,
dimension.
max_dimension: (optional) (scalar) maximum allowed size
of the larger image dimension.
method: (optional) interpolation method used in resizing. Defaults to
BILINEAR.
align_corners: bool. If true, exactly align all 4 corners of the input
and output. Defaults to False.
......@@ -1372,25 +1758,71 @@ def resize_to_range(image,
with tf.name_scope('ResizeToRange', values=[image, min_dimension]):
if image.get_shape().is_fully_defined():
new_size = _compute_new_static_size(image, min_dimension,
max_dimension)
new_size = _compute_new_static_size(image, min_dimension, max_dimension)
else:
new_size = _compute_new_dynamic_size(image, min_dimension,
max_dimension)
new_image = tf.image.resize_images(image, new_size,
align_corners=align_corners)
new_size = _compute_new_dynamic_size(image, min_dimension, max_dimension)
new_image = tf.image.resize_images(
image, new_size, method=method, align_corners=align_corners)
result = new_image
if masks is not None:
new_masks = tf.expand_dims(masks, 3)
new_masks = tf.image.resize_nearest_neighbor(new_masks, new_size,
align_corners=align_corners)
new_masks = tf.image.resize_nearest_neighbor(
new_masks, new_size, align_corners=align_corners)
new_masks = tf.squeeze(new_masks, 3)
result = [new_image, new_masks]
return result
# TODO: Make sure the static shapes are preserved.
def resize_to_min_dimension(image, masks=None, min_dimension=600):
"""Resizes image and masks given the min size maintaining the aspect ratio.
If one of the image dimensions is smaller that min_dimension, it will scale
the image such that its smallest dimension is equal to min_dimension.
Otherwise, will keep the image size as is.
Args:
image: a tensor of size [height, width, channels].
masks: (optional) a tensors of size [num_instances, height, width].
min_dimension: minimum image dimension.
Returns:
a tuple containing the following:
Resized image. A tensor of size [new_height, new_width, channels].
(optional) Resized masks. A tensor of
size [num_instances, new_height, new_width].
Raises:
ValueError: if the image is not a 3D tensor.
"""
if len(image.get_shape()) != 3:
raise ValueError('Image should be 3D tensor')
with tf.name_scope('ResizeGivenMinDimension', values=[image, min_dimension]):
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
min_image_dimension = tf.minimum(image_height, image_width)
min_target_dimension = tf.maximum(min_image_dimension, min_dimension)
target_ratio = tf.to_float(min_target_dimension) / tf.to_float(
min_image_dimension)
target_height = tf.to_int32(tf.to_float(image_height) * target_ratio)
target_width = tf.to_int32(tf.to_float(image_width) * target_ratio)
image = tf.image.resize_bilinear(
tf.expand_dims(image, axis=0),
size=[target_height, target_width],
align_corners=True)
result = tf.squeeze(image, axis=0)
if masks is not None:
masks = tf.image.resize_nearest_neighbor(
tf.expand_dims(masks, axis=3),
size=[target_height, target_width],
align_corners=True)
result = (result, tf.squeeze(masks, axis=3))
return result
def scale_boxes_to_pixel_coordinates(image, boxes, keypoints=None):
"""Scales boxes from normalized to pixel coordinates.
......@@ -1433,9 +1865,10 @@ def resize_image(image,
with tf.name_scope(
'ResizeImage',
values=[image, new_height, new_width, method, align_corners]):
new_image = tf.image.resize_images(image, [new_height, new_width],
method=method,
align_corners=align_corners)
new_image = tf.image.resize_images(
image, [new_height, new_width],
method=method,
align_corners=align_corners)
result = new_image
if masks is not None:
num_instances = tf.shape(masks)[0]
......@@ -1451,8 +1884,7 @@ def resize_image(image,
new_masks = tf.reshape(masks, [0, new_size[0], new_size[1]])
return new_masks
masks = tf.cond(num_instances > 0,
resize_masks_branch,
masks = tf.cond(num_instances > 0, resize_masks_branch,
reshape_masks_branch)
result = [new_image, masks]
......@@ -1520,6 +1952,7 @@ def rgb_to_gray(image):
def ssd_random_crop(image,
boxes,
labels,
label_scores=None,
masks=None,
keypoints=None,
min_object_covered=(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
......@@ -1542,6 +1975,7 @@ def ssd_random_crop(image,
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_scores: rank 1 float32 tensor containing the scores.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
......@@ -1567,13 +2001,14 @@ def ssd_random_crop(image,
Boxes are in normalized form.
labels: new labels.
If masks, or keypoints is not None, the function also returns:
If label_scores, masks, or keypoints is not None, the function also returns:
label_scores: new label scores.
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
"""
def random_crop_selector(selected_result, index):
"""Applies random_crop_image to selected result.
......@@ -1587,8 +2022,12 @@ def ssd_random_crop(image,
"""
i = 3
image, boxes, labels = selected_result[:i]
selected_label_scores = None
selected_masks = None
selected_keypoints = None
if label_scores is not None:
selected_label_scores = selected_result[i]
i += 1
if masks is not None:
selected_masks = selected_result[i]
i += 1
......@@ -1599,6 +2038,7 @@ def ssd_random_crop(image,
image=image,
boxes=boxes,
labels=labels,
label_scores=selected_label_scores,
masks=selected_masks,
keypoints=selected_keypoints,
min_object_covered=min_object_covered[index],
......@@ -1610,7 +2050,8 @@ def ssd_random_crop(image,
result = _apply_with_random_selector_tuples(
tuple(
t for t in (image, boxes, labels, masks, keypoints) if t is not None),
t for t in (image, boxes, labels, label_scores, masks, keypoints)
if t is not None),
random_crop_selector,
num_cases=len(min_object_covered))
return result
......@@ -1619,13 +2060,14 @@ def ssd_random_crop(image,
def ssd_random_crop_pad(image,
boxes,
labels,
label_scores=None,
min_object_covered=(0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
aspect_ratio_range=((0.5, 2.0),) * 6,
area_range=((0.1, 1.0),) * 6,
overlap_thresh=(0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
random_coef=(0.15,) * 6,
min_padded_size_ratio=(None,) * 6,
max_padded_size_ratio=(None,) * 6,
min_padded_size_ratio=((1.0, 1.0),) * 6,
max_padded_size_ratio=((2.0, 2.0),) * 6,
pad_color=(None,) * 6,
seed=None):
"""Random crop preprocessing with default parameters as in SSD paper.
......@@ -1642,6 +2084,8 @@ def ssd_random_crop_pad(image,
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_scores: float32 tensor of shape [num_instances] representing the
score for each box.
min_object_covered: the cropped image must cover at least this fraction of
at least one of the input bounding boxes.
aspect_ratio_range: allowed range for aspect ratio of cropped image.
......@@ -1654,11 +2098,9 @@ def ssd_random_crop_pad(image,
cropped image, and if it is 1.0, we will always get the
original image.
min_padded_size_ratio: min ratio of padded image height and width to the
input image's height and width. If None, it will
be set to [0.0, 0.0].
input image's height and width.
max_padded_size_ratio: max ratio of padded image height and width to the
input image's height and width. If None, it will
be set to [2.0, 2.0].
input image's height and width.
pad_color: padding color. A rank 1 tensor of [3] with dtype=tf.float32.
if set as None, it will be set to average color of the randomly
cropped image.
......@@ -1669,14 +2111,21 @@ def ssd_random_crop_pad(image,
boxes: boxes which is the same rank as input boxes. Boxes are in normalized
form.
new_labels: new labels.
new_label_scores: new label scores.
"""
def random_crop_pad_selector(image_boxes_labels, index):
image, boxes, labels = image_boxes_labels
i = 3
image, boxes, labels = image_boxes_labels[:i]
selected_label_scores = None
if label_scores is not None:
selected_label_scores = image_boxes_labels[i]
return random_crop_pad_image(
image,
boxes,
labels,
selected_label_scores,
min_object_covered=min_object_covered[index],
aspect_ratio_range=aspect_ratio_range[index],
area_range=area_range[index],
......@@ -1687,17 +2136,17 @@ def ssd_random_crop_pad(image,
pad_color=pad_color[index],
seed=seed)
new_image, new_boxes, new_labels = _apply_with_random_selector_tuples(
(image, boxes, labels),
return _apply_with_random_selector_tuples(
tuple(t for t in (image, boxes, labels, label_scores) if t is not None),
random_crop_pad_selector,
num_cases=len(min_object_covered))
return new_image, new_boxes, new_labels
def ssd_random_crop_fixed_aspect_ratio(
image,
boxes,
labels,
label_scores=None,
masks=None,
keypoints=None,
min_object_covered=(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
......@@ -1722,6 +2171,8 @@ def ssd_random_crop_fixed_aspect_ratio(
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_scores: (optional) float32 tensor of shape [num_instances]
representing the score for each box.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
......@@ -1747,23 +2198,26 @@ def ssd_random_crop_fixed_aspect_ratio(
Boxes are in normalized form.
labels: new labels.
If masks, or keypoints is not None, the function also returns:
If masks or keypoints is not None, the function also returns:
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
"""
aspect_ratio_range = ((aspect_ratio, aspect_ratio),) * len(area_range)
crop_result = ssd_random_crop(image, boxes, labels, masks, keypoints,
min_object_covered, aspect_ratio_range,
area_range, overlap_thresh, random_coef, seed)
crop_result = ssd_random_crop(
image, boxes, labels, label_scores, masks, keypoints, min_object_covered,
aspect_ratio_range, area_range, overlap_thresh, random_coef, seed)
i = 3
new_image, new_boxes, new_labels = crop_result[:i]
new_label_scores = None
new_masks = None
new_keypoints = None
if label_scores is not None:
new_label_scores = crop_result[i]
i += 1
if masks is not None:
new_masks = crop_result[i]
i += 1
......@@ -1773,6 +2227,7 @@ def ssd_random_crop_fixed_aspect_ratio(
new_image,
new_boxes,
new_labels,
new_label_scores,
new_masks,
new_keypoints,
aspect_ratio=aspect_ratio,
......@@ -1781,11 +2236,121 @@ def ssd_random_crop_fixed_aspect_ratio(
return result
def get_default_func_arg_map(include_instance_masks=False,
def ssd_random_crop_pad_fixed_aspect_ratio(
image,
boxes,
labels,
label_scores=None,
masks=None,
keypoints=None,
min_object_covered=(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
aspect_ratio=1.0,
aspect_ratio_range=((0.5, 2.0),) * 7,
area_range=((0.1, 1.0),) * 7,
overlap_thresh=(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
random_coef=(0.15,) * 7,
min_padded_size_ratio=(1.0, 1.0),
max_padded_size_ratio=(2.0, 2.0),
seed=None):
"""Random crop and pad preprocessing with default parameters as in SSD paper.
Liu et al., SSD: Single shot multibox detector.
For further information on random crop preprocessing refer to RandomCrop
function above.
The only difference is that after the initial crop, images are zero-padded
to a fixed aspect ratio instead of being resized to that aspect ratio.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_scores: (optional) float32 tensor of shape [num_instances]
representing the score for each box.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
min_object_covered: the cropped image must cover at least this fraction of
at least one of the input bounding boxes.
aspect_ratio: the final aspect ratio to pad to.
aspect_ratio_range: allowed range for aspect ratio of cropped image.
area_range: allowed range for area ratio between cropped image and the
original image.
overlap_thresh: minimum overlap thresh with new cropped
image to keep the box.
random_coef: a random coefficient that defines the chance of getting the
original image. If random_coef is 0, we will always get the
cropped image, and if it is 1.0, we will always get the
original image.
min_padded_size_ratio: min ratio of padded image height and width to the
input image's height and width.
max_padded_size_ratio: max ratio of padded image height and width to the
input image's height and width.
seed: random seed.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
If masks or keypoints is not None, the function also returns:
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
"""
crop_result = ssd_random_crop(
image, boxes, labels, label_scores, masks, keypoints, min_object_covered,
aspect_ratio_range, area_range, overlap_thresh, random_coef, seed)
i = 3
new_image, new_boxes, new_labels = crop_result[:i]
new_label_scores = None
new_masks = None
new_keypoints = None
if label_scores is not None:
new_label_scores = crop_result[i]
i += 1
if masks is not None:
new_masks = crop_result[i]
i += 1
if keypoints is not None:
new_keypoints = crop_result[i]
result = random_pad_to_aspect_ratio(
new_image,
new_boxes,
new_masks,
new_keypoints,
aspect_ratio=aspect_ratio,
min_padded_size_ratio=min_padded_size_ratio,
max_padded_size_ratio=max_padded_size_ratio,
seed=seed)
result = list(result)
if new_label_scores is not None:
result.insert(2, new_label_scores)
result.insert(2, new_labels)
result = tuple(result)
return result
def get_default_func_arg_map(include_label_scores=False,
include_instance_masks=False,
include_keypoints=False):
"""Returns the default mapping from a preprocessor function to its args.
Args:
include_label_scores: If True, preprocessing functions will modify the
label scores, too.
include_instance_masks: If True, preprocessing functions will modify the
instance masks, too.
include_keypoints: If True, preprocessing functions will modify the
......@@ -1794,6 +2359,10 @@ def get_default_func_arg_map(include_instance_masks=False,
Returns:
A map from preprocessing functions to the arguments they receive.
"""
groundtruth_label_scores = None
if include_label_scores:
groundtruth_label_scores = (fields.InputDataFields.groundtruth_label_scores)
groundtruth_instance_masks = None
if include_instance_masks:
groundtruth_instance_masks = (
......@@ -1805,13 +2374,25 @@ def get_default_func_arg_map(include_instance_masks=False,
prep_func_arg_map = {
normalize_image: (fields.InputDataFields.image,),
random_horizontal_flip: (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_instance_masks,
groundtruth_keypoints,),
random_horizontal_flip: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_instance_masks,
groundtruth_keypoints,),
random_vertical_flip: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_instance_masks,
groundtruth_keypoints,),
random_rotation90: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_instance_masks,
groundtruth_keypoints,),
random_pixel_value_scale: (fields.InputDataFields.image,),
random_image_scale: (fields.InputDataFields.image,
groundtruth_instance_masks,),
random_image_scale: (
fields.InputDataFields.image,
groundtruth_instance_masks,),
random_rgb_to_gray: (fields.InputDataFields.image,),
random_adjust_brightness: (fields.InputDataFields.image,),
random_adjust_contrast: (fields.InputDataFields.image,),
......@@ -1819,54 +2400,79 @@ def get_default_func_arg_map(include_instance_masks=False,
random_adjust_saturation: (fields.InputDataFields.image,),
random_distort_color: (fields.InputDataFields.image,),
random_jitter_boxes: (fields.InputDataFields.groundtruth_boxes,),
random_crop_image: (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_instance_masks,
groundtruth_keypoints,),
random_crop_image: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_scores,
groundtruth_instance_masks,
groundtruth_keypoints,),
random_pad_image: (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes),
random_crop_pad_image: (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes),
random_crop_to_aspect_ratio: (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_instance_masks,
groundtruth_keypoints,),
fields.InputDataFields.groundtruth_classes,
groundtruth_label_scores),
random_crop_to_aspect_ratio: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_scores,
groundtruth_instance_masks,
groundtruth_keypoints,),
random_pad_to_aspect_ratio: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_instance_masks,
groundtruth_keypoints,),
random_black_patches: (fields.InputDataFields.image,),
retain_boxes_above_threshold: (
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
fields.InputDataFields.groundtruth_label_scores,
groundtruth_label_scores,
groundtruth_instance_masks,
groundtruth_keypoints,),
image_to_float: (fields.InputDataFields.image,),
random_resize_method: (fields.InputDataFields.image,),
resize_to_range: (fields.InputDataFields.image,
groundtruth_instance_masks,),
resize_to_range: (
fields.InputDataFields.image,
groundtruth_instance_masks,),
resize_to_min_dimension: (
fields.InputDataFields.image,
groundtruth_instance_masks,),
scale_boxes_to_pixel_coordinates: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_keypoints,),
flip_boxes: (fields.InputDataFields.groundtruth_boxes,),
resize_image: (fields.InputDataFields.image,
groundtruth_instance_masks,),
resize_image: (
fields.InputDataFields.image,
groundtruth_instance_masks,),
subtract_channel_mean: (fields.InputDataFields.image,),
one_hot_encoding: (fields.InputDataFields.groundtruth_image_classes,),
rgb_to_gray: (fields.InputDataFields.image,),
ssd_random_crop: (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_instance_masks,
groundtruth_keypoints,),
ssd_random_crop: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_scores,
groundtruth_instance_masks,
groundtruth_keypoints,),
ssd_random_crop_pad: (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes),
fields.InputDataFields.groundtruth_classes,
groundtruth_label_scores),
ssd_random_crop_fixed_aspect_ratio: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_scores,
groundtruth_instance_masks,
groundtruth_keypoints,),
ssd_random_crop_pad_fixed_aspect_ratio: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_scores,
groundtruth_instance_masks,
groundtruth_keypoints,),
}
......@@ -1936,6 +2542,7 @@ def preprocess(tensor_dict, preprocess_options, func_arg_map=None):
def get_arg(key):
return tensor_dict[key] if key is not None else None
args = [get_arg(a) for a in arg_names]
results = func(*args, **params)
if not isinstance(results, (list, tuple)):
......
......@@ -24,9 +24,9 @@ from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
if six.PY2:
import mock # pylint: disable=g-import-not-at-top
import mock # pylint: disable=g-import-not-at-top
else:
from unittest import mock # pylint: disable=g-import-not-at-top
from unittest import mock # pylint: disable=g-import-not-at-top
class PreprocessorTest(tf.test.TestCase):
......@@ -60,6 +60,10 @@ class PreprocessorTest(tf.test.TestCase):
images = tf.concat([images_r, images_g, images_b], 3)
return images
def createEmptyTestBoxes(self):
boxes = tf.constant([[]], dtype=tf.float32)
return boxes
def createTestBoxes(self):
boxes = tf.constant(
[[0.0, 0.25, 0.75, 1.0], [0.25, 0.5, 0.75, 1.0]], dtype=tf.float32)
......@@ -162,7 +166,7 @@ class PreprocessorTest(tf.test.TestCase):
images = tf.concat([images_r, images_g, images_b], 3)
return images
def expectedImagesAfterMirroring(self):
def expectedImagesAfterLeftRightFlip(self):
images_r = tf.constant([[[0, 0, 0, 0], [0, 0, -1, -1],
[0, 0, 0, -1], [0, 0, 0.5, 0.5]]],
dtype=tf.float32)
......@@ -178,17 +182,54 @@ class PreprocessorTest(tf.test.TestCase):
images = tf.concat([images_r, images_g, images_b], 3)
return images
def expectedBoxesAfterMirroring(self):
def expectedImagesAfterUpDownFlip(self):
images_r = tf.constant([[[0.5, 0.5, 0, 0], [-1, 0, 0, 0],
[-1, -1, 0, 0], [0, 0, 0, 0]]],
dtype=tf.float32)
images_r = tf.expand_dims(images_r, 3)
images_g = tf.constant([[[0.5, 0.5, 0, 0.5], [-1, 0, 0.5, 0.5],
[-1, -1, 0, 0], [-1, -1, 0, 0]]],
dtype=tf.float32)
images_g = tf.expand_dims(images_g, 3)
images_b = tf.constant([[[0.5, 0.5, 0.5, 0], [-1, 0, 0, -1],
[-1, -1, 0, 0.5], [0, 0, 0.5, -1]]],
dtype=tf.float32)
images_b = tf.expand_dims(images_b, 3)
images = tf.concat([images_r, images_g, images_b], 3)
return images
def expectedImagesAfterRot90(self):
images_r = tf.constant([[[0, 0, 0, 0], [0, 0, 0, 0],
[0, -1, 0, 0.5], [0, -1, -1, 0.5]]],
dtype=tf.float32)
images_r = tf.expand_dims(images_r, 3)
images_g = tf.constant([[[0, 0, 0.5, 0.5], [0, 0, 0.5, 0],
[-1, -1, 0, 0.5], [-1, -1, -1, 0.5]]],
dtype=tf.float32)
images_g = tf.expand_dims(images_g, 3)
images_b = tf.constant([[[-1, 0.5, -1, 0], [0.5, 0, 0, 0.5],
[0, -1, 0, 0.5], [0, -1, -1, 0.5]]],
dtype=tf.float32)
images_b = tf.expand_dims(images_b, 3)
images = tf.concat([images_r, images_g, images_b], 3)
return images
def expectedBoxesAfterLeftRightFlip(self):
boxes = tf.constant([[0.0, 0.0, 0.75, 0.75], [0.25, 0.0, 0.75, 0.5]],
dtype=tf.float32)
return boxes
def expectedBoxesAfterXY(self):
boxes = tf.constant([[0.25, 0.0, 1.0, 0.75], [0.5, 0.25, 1, 0.75]],
def expectedBoxesAfterUpDownFlip(self):
boxes = tf.constant([[0.25, 0.25, 1.0, 1.0], [0.25, 0.5, 0.75, 1.0]],
dtype=tf.float32)
return boxes
def expectedMasksAfterMirroring(self):
def expectedBoxesAfterRot90(self):
boxes = tf.constant(
[[0.0, 0.0, 0.75, 0.75], [0.0, 0.25, 0.5, 0.75]], dtype=tf.float32)
return boxes
def expectedMasksAfterLeftRightFlip(self):
mask = np.array([
[[0.0, 0.0, 255.0],
[0.0, 0.0, 255.0],
......@@ -198,6 +239,26 @@ class PreprocessorTest(tf.test.TestCase):
[0.0, 255.0, 255.0]]])
return tf.constant(mask, dtype=tf.float32)
def expectedMasksAfterUpDownFlip(self):
mask = np.array([
[[255.0, 0.0, 0.0],
[255.0, 0.0, 0.0],
[255.0, 0.0, 0.0]],
[[255.0, 255.0, 0.0],
[255.0, 255.0, 0.0],
[255.0, 255.0, 0.0]]])
return tf.constant(mask, dtype=tf.float32)
def expectedMasksAfterRot90(self):
mask = np.array([
[[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[255.0, 255.0, 255.0]],
[[0.0, 0.0, 0.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0]]])
return tf.constant(mask, dtype=tf.float32)
def expectedLabelScoresAfterThresholding(self):
return tf.constant([1.0], dtype=tf.float32)
......@@ -326,42 +387,62 @@ class PreprocessorTest(tf.test.TestCase):
self.assertAllClose(
retained_label_scores_, expected_retained_label_scores_)
def testRandomFlipBoxes(self):
def testFlipBoxesLeftRight(self):
boxes = self.createTestBoxes()
flipped_boxes = preprocessor._flip_boxes_left_right(boxes)
expected_boxes = self.expectedBoxesAfterLeftRightFlip()
with self.test_session() as sess:
flipped_boxes, expected_boxes = sess.run([flipped_boxes, expected_boxes])
self.assertAllEqual(flipped_boxes.flatten(), expected_boxes.flatten())
# Case where the boxes are flipped.
boxes_expected1 = self.expectedBoxesAfterMirroring()
# Case where the boxes are not flipped.
boxes_expected2 = boxes
def testFlipBoxesUpDown(self):
boxes = self.createTestBoxes()
flipped_boxes = preprocessor._flip_boxes_up_down(boxes)
expected_boxes = self.expectedBoxesAfterUpDownFlip()
with self.test_session() as sess:
flipped_boxes, expected_boxes = sess.run([flipped_boxes, expected_boxes])
self.assertAllEqual(flipped_boxes.flatten(), expected_boxes.flatten())
# After elementwise multiplication, the result should be all-zero since one
# of them is all-zero.
boxes_diff = tf.multiply(
tf.squared_difference(boxes, boxes_expected1),
tf.squared_difference(boxes, boxes_expected2))
expected_result = tf.zeros_like(boxes_diff)
def testRot90Boxes(self):
boxes = self.createTestBoxes()
rotated_boxes = preprocessor._rot90_boxes(boxes)
expected_boxes = self.expectedBoxesAfterRot90()
with self.test_session() as sess:
rotated_boxes, expected_boxes = sess.run([rotated_boxes, expected_boxes])
self.assertAllEqual(rotated_boxes.flatten(), expected_boxes.flatten())
def testFlipMasksLeftRight(self):
test_mask = self.createTestMasks()
flipped_mask = preprocessor._flip_masks_left_right(test_mask)
expected_mask = self.expectedMasksAfterLeftRightFlip()
with self.test_session() as sess:
(boxes_diff, expected_result) = sess.run([boxes_diff, expected_result])
self.assertAllEqual(boxes_diff, expected_result)
flipped_mask, expected_mask = sess.run([flipped_mask, expected_mask])
self.assertAllEqual(flipped_mask.flatten(), expected_mask.flatten())
def testFlipMasks(self):
def testFlipMasksUpDown(self):
test_mask = self.createTestMasks()
flipped_mask = preprocessor._flip_masks(test_mask)
expected_mask = self.expectedMasksAfterMirroring()
flipped_mask = preprocessor._flip_masks_up_down(test_mask)
expected_mask = self.expectedMasksAfterUpDownFlip()
with self.test_session() as sess:
flipped_mask, expected_mask = sess.run([flipped_mask, expected_mask])
self.assertAllEqual(flipped_mask.flatten(), expected_mask.flatten())
def testRot90Masks(self):
test_mask = self.createTestMasks()
rotated_mask = preprocessor._rot90_masks(test_mask)
expected_mask = self.expectedMasksAfterRot90()
with self.test_session() as sess:
rotated_mask, expected_mask = sess.run([rotated_mask, expected_mask])
self.assertAllEqual(rotated_mask.flatten(), expected_mask.flatten())
def testRandomHorizontalFlip(self):
preprocess_options = [(preprocessor.random_horizontal_flip, {})]
images = self.expectedImagesAfterNormalization()
boxes = self.createTestBoxes()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes}
images_expected1 = self.expectedImagesAfterMirroring()
boxes_expected1 = self.expectedBoxesAfterMirroring()
images_expected1 = self.expectedImagesAfterLeftRightFlip()
boxes_expected1 = self.expectedBoxesAfterLeftRightFlip()
images_expected2 = images
boxes_expected2 = boxes
tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
......@@ -385,6 +466,31 @@ class PreprocessorTest(tf.test.TestCase):
self.assertAllClose(boxes_diff_, boxes_diff_expected_)
self.assertAllClose(images_diff_, images_diff_expected_)
def testRandomHorizontalFlipWithEmptyBoxes(self):
preprocess_options = [(preprocessor.random_horizontal_flip, {})]
images = self.expectedImagesAfterNormalization()
boxes = self.createEmptyTestBoxes()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes}
images_expected1 = self.expectedImagesAfterLeftRightFlip()
boxes_expected = self.createEmptyTestBoxes()
images_expected2 = images
tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
images = tensor_dict[fields.InputDataFields.image]
boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
images_diff1 = tf.squared_difference(images, images_expected1)
images_diff2 = tf.squared_difference(images, images_expected2)
images_diff = tf.multiply(images_diff1, images_diff2)
images_diff_expected = tf.zeros_like(images_diff)
with self.test_session() as sess:
(images_diff_, images_diff_expected_, boxes_,
boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes,
boxes_expected])
self.assertAllClose(boxes_, boxes_expected_)
self.assertAllClose(images_diff_, images_diff_expected_)
def testRunRandomHorizontalFlipWithMaskAndKeypoints(self):
preprocess_options = [(preprocessor.random_horizontal_flip, {})]
image_height = 3
......@@ -416,6 +522,176 @@ class PreprocessorTest(tf.test.TestCase):
self.assertTrue(masks is not None)
self.assertTrue(keypoints is not None)
def testRandomVerticalFlip(self):
preprocess_options = [(preprocessor.random_vertical_flip, {})]
images = self.expectedImagesAfterNormalization()
boxes = self.createTestBoxes()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes}
images_expected1 = self.expectedImagesAfterUpDownFlip()
boxes_expected1 = self.expectedBoxesAfterUpDownFlip()
images_expected2 = images
boxes_expected2 = boxes
tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
images = tensor_dict[fields.InputDataFields.image]
boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
boxes_diff1 = tf.squared_difference(boxes, boxes_expected1)
boxes_diff2 = tf.squared_difference(boxes, boxes_expected2)
boxes_diff = tf.multiply(boxes_diff1, boxes_diff2)
boxes_diff_expected = tf.zeros_like(boxes_diff)
images_diff1 = tf.squared_difference(images, images_expected1)
images_diff2 = tf.squared_difference(images, images_expected2)
images_diff = tf.multiply(images_diff1, images_diff2)
images_diff_expected = tf.zeros_like(images_diff)
with self.test_session() as sess:
(images_diff_, images_diff_expected_, boxes_diff_,
boxes_diff_expected_) = sess.run([images_diff, images_diff_expected,
boxes_diff, boxes_diff_expected])
self.assertAllClose(boxes_diff_, boxes_diff_expected_)
self.assertAllClose(images_diff_, images_diff_expected_)
def testRandomVerticalFlipWithEmptyBoxes(self):
preprocess_options = [(preprocessor.random_vertical_flip, {})]
images = self.expectedImagesAfterNormalization()
boxes = self.createEmptyTestBoxes()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes}
images_expected1 = self.expectedImagesAfterUpDownFlip()
boxes_expected = self.createEmptyTestBoxes()
images_expected2 = images
tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
images = tensor_dict[fields.InputDataFields.image]
boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
images_diff1 = tf.squared_difference(images, images_expected1)
images_diff2 = tf.squared_difference(images, images_expected2)
images_diff = tf.multiply(images_diff1, images_diff2)
images_diff_expected = tf.zeros_like(images_diff)
with self.test_session() as sess:
(images_diff_, images_diff_expected_, boxes_,
boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes,
boxes_expected])
self.assertAllClose(boxes_, boxes_expected_)
self.assertAllClose(images_diff_, images_diff_expected_)
def testRunRandomVerticalFlipWithMaskAndKeypoints(self):
preprocess_options = [(preprocessor.random_vertical_flip, {})]
image_height = 3
image_width = 3
images = tf.random_uniform([1, image_height, image_width, 3])
boxes = self.createTestBoxes()
masks = self.createTestMasks()
keypoints = self.createTestKeypoints()
keypoint_flip_permutation = self.createKeypointFlipPermutation()
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_instance_masks: masks,
fields.InputDataFields.groundtruth_keypoints: keypoints
}
preprocess_options = [
(preprocessor.random_vertical_flip,
{'keypoint_flip_permutation': keypoint_flip_permutation})]
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_instance_masks=True, include_keypoints=True)
tensor_dict = preprocessor.preprocess(
tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map)
boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints]
with self.test_session() as sess:
boxes, masks, keypoints = sess.run([boxes, masks, keypoints])
self.assertTrue(boxes is not None)
self.assertTrue(masks is not None)
self.assertTrue(keypoints is not None)
def testRandomRotation90(self):
preprocess_options = [(preprocessor.random_rotation90, {})]
images = self.expectedImagesAfterNormalization()
boxes = self.createTestBoxes()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes}
images_expected1 = self.expectedImagesAfterRot90()
boxes_expected1 = self.expectedBoxesAfterRot90()
images_expected2 = images
boxes_expected2 = boxes
tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
images = tensor_dict[fields.InputDataFields.image]
boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
boxes_diff1 = tf.squared_difference(boxes, boxes_expected1)
boxes_diff2 = tf.squared_difference(boxes, boxes_expected2)
boxes_diff = tf.multiply(boxes_diff1, boxes_diff2)
boxes_diff_expected = tf.zeros_like(boxes_diff)
images_diff1 = tf.squared_difference(images, images_expected1)
images_diff2 = tf.squared_difference(images, images_expected2)
images_diff = tf.multiply(images_diff1, images_diff2)
images_diff_expected = tf.zeros_like(images_diff)
with self.test_session() as sess:
(images_diff_, images_diff_expected_, boxes_diff_,
boxes_diff_expected_) = sess.run([images_diff, images_diff_expected,
boxes_diff, boxes_diff_expected])
self.assertAllClose(boxes_diff_, boxes_diff_expected_)
self.assertAllClose(images_diff_, images_diff_expected_)
def testRandomRotation90WithEmptyBoxes(self):
preprocess_options = [(preprocessor.random_rotation90, {})]
images = self.expectedImagesAfterNormalization()
boxes = self.createEmptyTestBoxes()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes}
images_expected1 = self.expectedImagesAfterRot90()
boxes_expected = self.createEmptyTestBoxes()
images_expected2 = images
tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
images = tensor_dict[fields.InputDataFields.image]
boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
images_diff1 = tf.squared_difference(images, images_expected1)
images_diff2 = tf.squared_difference(images, images_expected2)
images_diff = tf.multiply(images_diff1, images_diff2)
images_diff_expected = tf.zeros_like(images_diff)
with self.test_session() as sess:
(images_diff_, images_diff_expected_, boxes_,
boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes,
boxes_expected])
self.assertAllClose(boxes_, boxes_expected_)
self.assertAllClose(images_diff_, images_diff_expected_)
def testRunRandomRotation90WithMaskAndKeypoints(self):
preprocess_options = [(preprocessor.random_rotation90, {})]
image_height = 3
image_width = 3
images = tf.random_uniform([1, image_height, image_width, 3])
boxes = self.createTestBoxes()
masks = self.createTestMasks()
keypoints = self.createTestKeypoints()
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_instance_masks: masks,
fields.InputDataFields.groundtruth_keypoints: keypoints
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_instance_masks=True, include_keypoints=True)
tensor_dict = preprocessor.preprocess(
tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map)
boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints]
with self.test_session() as sess:
boxes, masks, keypoints = sess.run([boxes, masks, keypoints])
self.assertTrue(boxes is not None)
self.assertTrue(masks is not None)
self.assertTrue(keypoints is not None)
def testRandomPixelValueScale(self):
preprocessing_options = []
preprocessing_options.append((preprocessor.normalize_image, {
......@@ -600,9 +876,11 @@ class PreprocessorTest(tf.test.TestCase):
images = self.createTestImages()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels}
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
}
distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
preprocessing_options)
distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
......@@ -637,7 +915,7 @@ class PreprocessorTest(tf.test.TestCase):
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels
fields.InputDataFields.groundtruth_classes: labels,
}
distorted_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options)
......@@ -671,9 +949,11 @@ class PreprocessorTest(tf.test.TestCase):
images = self.createTestImages()
boxes = self.createTestBoxesOutOfImage()
labels = self.createTestLabels()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels}
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
}
distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
preprocessing_options)
distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
......@@ -703,9 +983,13 @@ class PreprocessorTest(tf.test.TestCase):
images = self.createTestImages()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels}
label_scores = self.createTestLabelScores()
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_label_scores: label_scores
}
tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
images = tensor_dict[fields.InputDataFields.image]
......@@ -720,6 +1004,8 @@ class PreprocessorTest(tf.test.TestCase):
fields.InputDataFields.groundtruth_boxes]
distorted_labels = distorted_tensor_dict[
fields.InputDataFields.groundtruth_classes]
distorted_label_scores = distorted_tensor_dict[
fields.InputDataFields.groundtruth_label_scores]
boxes_shape = tf.shape(boxes)
distorted_boxes_shape = tf.shape(distorted_boxes)
images_shape = tf.shape(images)
......@@ -728,15 +1014,18 @@ class PreprocessorTest(tf.test.TestCase):
with self.test_session() as sess:
(boxes_shape_, distorted_boxes_shape_, images_shape_,
distorted_images_shape_, images_, distorted_images_,
boxes_, distorted_boxes_, labels_, distorted_labels_) = sess.run(
boxes_, distorted_boxes_, labels_, distorted_labels_,
label_scores_, distorted_label_scores_) = sess.run(
[boxes_shape, distorted_boxes_shape, images_shape,
distorted_images_shape, images, distorted_images,
boxes, distorted_boxes, labels, distorted_labels])
boxes, distorted_boxes, labels, distorted_labels,
label_scores, distorted_label_scores])
self.assertAllEqual(boxes_shape_, distorted_boxes_shape_)
self.assertAllEqual(images_shape_, distorted_images_shape_)
self.assertAllClose(images_, distorted_images_)
self.assertAllClose(boxes_, distorted_boxes_)
self.assertAllEqual(labels_, distorted_labels_)
self.assertAllEqual(label_scores_, distorted_label_scores_)
def testRandomCropWithMockSampleDistortedBoundingBox(self):
preprocessing_options = [(preprocessor.normalize_image, {
......@@ -751,9 +1040,12 @@ class PreprocessorTest(tf.test.TestCase):
[0.2, 0.4, 0.75, 0.75],
[0.3, 0.1, 0.4, 0.7]], dtype=tf.float32)
labels = tf.constant([1, 7, 11], dtype=tf.int32)
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels}
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
}
tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
images = tensor_dict[fields.InputDataFields.image]
......@@ -786,6 +1078,36 @@ class PreprocessorTest(tf.test.TestCase):
self.assertAllClose(distorted_boxes_, expected_boxes_)
self.assertAllEqual(distorted_labels_, expected_labels_)
def testStrictRandomCropImageWithLabelScores(self):
image = self.createColorfulTestImage()[0]
boxes = self.createTestBoxes()
labels = self.createTestLabels()
label_scores = self.createTestLabelScores()
with mock.patch.object(
tf.image,
'sample_distorted_bounding_box'
) as mock_sample_distorted_bounding_box:
mock_sample_distorted_bounding_box.return_value = (
tf.constant([6, 143, 0], dtype=tf.int32),
tf.constant([190, 237, -1], dtype=tf.int32),
tf.constant([[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32))
new_image, new_boxes, new_labels, new_label_scores = (
preprocessor._strict_random_crop_image(
image, boxes, labels, label_scores))
with self.test_session() as sess:
new_image, new_boxes, new_labels, new_label_scores = (
sess.run(
[new_image, new_boxes, new_labels, new_label_scores])
)
expected_boxes = np.array(
[[0.0, 0.0, 0.75789469, 1.0],
[0.23157893, 0.24050637, 0.75789469, 1.0]], dtype=np.float32)
self.assertAllEqual(new_image.shape, [190, 237, 3])
self.assertAllEqual(new_label_scores, [1.0, 0.5])
self.assertAllClose(
new_boxes.flatten(), expected_boxes.flatten())
def testStrictRandomCropImageWithMasks(self):
image = self.createColorfulTestImage()[0]
boxes = self.createTestBoxes()
......@@ -799,17 +1121,15 @@ class PreprocessorTest(tf.test.TestCase):
tf.constant([6, 143, 0], dtype=tf.int32),
tf.constant([190, 237, -1], dtype=tf.int32),
tf.constant([[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32))
(new_image, new_boxes, new_labels,
new_masks) = preprocessor._strict_random_crop_image(
image, boxes, labels, masks=masks)
new_image, new_boxes, new_labels, new_masks = (
preprocessor._strict_random_crop_image(
image, boxes, labels, masks=masks))
with self.test_session() as sess:
new_image, new_boxes, new_labels, new_masks = sess.run([
new_image, new_boxes, new_labels, new_masks])
expected_boxes = np.array([
[0.0, 0.0, 0.75789469, 1.0],
[0.23157893, 0.24050637, 0.75789469, 1.0],
], dtype=np.float32)
new_image, new_boxes, new_labels, new_masks = sess.run(
[new_image, new_boxes, new_labels, new_masks])
expected_boxes = np.array(
[[0.0, 0.0, 0.75789469, 1.0],
[0.23157893, 0.24050637, 0.75789469, 1.0]], dtype=np.float32)
self.assertAllEqual(new_image.shape, [190, 237, 3])
self.assertAllEqual(new_masks.shape, [2, 190, 237])
self.assertAllClose(
......@@ -828,17 +1148,16 @@ class PreprocessorTest(tf.test.TestCase):
tf.constant([6, 143, 0], dtype=tf.int32),
tf.constant([190, 237, -1], dtype=tf.int32),
tf.constant([[[0.03, 0.3575, 0.98, 0.95]]], dtype=tf.float32))
(new_image, new_boxes, new_labels,
new_keypoints) = preprocessor._strict_random_crop_image(
image, boxes, labels, keypoints=keypoints)
new_image, new_boxes, new_labels, new_keypoints = (
preprocessor._strict_random_crop_image(
image, boxes, labels, keypoints=keypoints))
with self.test_session() as sess:
new_image, new_boxes, new_labels, new_keypoints = sess.run([
new_image, new_boxes, new_labels, new_keypoints])
new_image, new_boxes, new_labels, new_keypoints = sess.run(
[new_image, new_boxes, new_labels, new_keypoints])
expected_boxes = np.array([
[0.0, 0.0, 0.75789469, 1.0],
[0.23157893, 0.24050637, 0.75789469, 1.0],
], dtype=np.float32)
[0.23157893, 0.24050637, 0.75789469, 1.0],], dtype=np.float32)
expected_keypoints = np.array([
[[np.nan, np.nan],
[np.nan, np.nan],
......@@ -1038,9 +1357,10 @@ class PreprocessorTest(tf.test.TestCase):
preprocessing_options = [
(preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
]
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_label_scores=True)
retained_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options)
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
retained_boxes = retained_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
retained_labels = retained_tensor_dict[
......@@ -1076,6 +1396,7 @@ class PreprocessorTest(tf.test.TestCase):
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_label_scores=True,
include_instance_masks=True)
preprocessing_options = [
......@@ -1107,6 +1428,7 @@ class PreprocessorTest(tf.test.TestCase):
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_label_scores=True,
include_keypoints=True)
preprocessing_options = [
......@@ -1214,6 +1536,94 @@ class PreprocessorTest(tf.test.TestCase):
self.assertAllClose(distorted_keypoints_.flatten(),
expected_keypoints.flatten())
def testRunRandomPadToAspectRatioWithMasks(self):
image = self.createColorfulTestImage()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
masks = tf.random_uniform([2, 200, 400], dtype=tf.float32)
tensor_dict = {
fields.InputDataFields.image: image,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_instance_masks: masks
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_instance_masks=True)
preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})]
distorted_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
distorted_image = distorted_tensor_dict[fields.InputDataFields.image]
distorted_boxes = distorted_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
distorted_labels = distorted_tensor_dict[
fields.InputDataFields.groundtruth_classes]
distorted_masks = distorted_tensor_dict[
fields.InputDataFields.groundtruth_instance_masks]
with self.test_session() as sess:
(distorted_image_, distorted_boxes_, distorted_labels_,
distorted_masks_) = sess.run([
distorted_image, distorted_boxes, distorted_labels, distorted_masks
])
expected_boxes = np.array(
[[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32)
self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3])
self.assertAllEqual(distorted_labels_, [1, 2])
self.assertAllClose(distorted_boxes_.flatten(),
expected_boxes.flatten())
self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
def testRunRandomPadToAspectRatioWithKeypoints(self):
image = self.createColorfulTestImage()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
keypoints = self.createTestKeypoints()
tensor_dict = {
fields.InputDataFields.image: image,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_keypoints: keypoints
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_keypoints=True)
preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})]
distorted_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
distorted_image = distorted_tensor_dict[fields.InputDataFields.image]
distorted_boxes = distorted_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
distorted_labels = distorted_tensor_dict[
fields.InputDataFields.groundtruth_classes]
distorted_keypoints = distorted_tensor_dict[
fields.InputDataFields.groundtruth_keypoints]
with self.test_session() as sess:
(distorted_image_, distorted_boxes_, distorted_labels_,
distorted_keypoints_) = sess.run([
distorted_image, distorted_boxes, distorted_labels,
distorted_keypoints
])
expected_boxes = np.array(
[[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32)
expected_keypoints = np.array([
[[0.05, 0.1], [0.1, 0.2], [0.15, 0.3]],
[[0.2, 0.4], [0.25, 0.5], [0.3, 0.6]],
], dtype=np.float32)
self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3])
self.assertAllEqual(distorted_labels_, [1, 2])
self.assertAllClose(distorted_boxes_.flatten(),
expected_boxes.flatten())
self.assertAllClose(distorted_keypoints_.flatten(),
expected_keypoints.flatten())
def testRandomPadImage(self):
preprocessing_options = [(preprocessor.normalize_image, {
'original_minval': 0,
......@@ -1225,9 +1635,11 @@ class PreprocessorTest(tf.test.TestCase):
images = self.createTestImages()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels}
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
}
tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
images = tensor_dict[fields.InputDataFields.image]
......@@ -1269,9 +1681,11 @@ class PreprocessorTest(tf.test.TestCase):
images = self.createTestImages()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels}
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
}
tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
images = tensor_dict[fields.InputDataFields.image]
......@@ -1305,22 +1719,15 @@ class PreprocessorTest(tf.test.TestCase):
padded_boxes_[:, 3] - padded_boxes_[:, 1])))
def testRandomCropToAspectRatio(self):
preprocessing_options = [(preprocessor.normalize_image, {
'original_minval': 0,
'original_maxval': 255,
'target_minval': 0,
'target_maxval': 1
})]
images = self.createTestImages()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels
fields.InputDataFields.groundtruth_classes: labels,
}
tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
tensor_dict = preprocessor.preprocess(tensor_dict, [])
images = tensor_dict[fields.InputDataFields.image]
preprocessing_options = [(preprocessor.random_crop_to_aspect_ratio, {
......@@ -1346,6 +1753,41 @@ class PreprocessorTest(tf.test.TestCase):
self.assertEqual(images_shape_[1], cropped_images_shape_[1] * 2)
self.assertEqual(images_shape_[2], cropped_images_shape_[2])
def testRandomPadToAspectRatio(self):
images = self.createTestImages()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
}
tensor_dict = preprocessor.preprocess(tensor_dict, [])
images = tensor_dict[fields.InputDataFields.image]
preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {
'aspect_ratio': 2.0
})]
padded_tensor_dict = preprocessor.preprocess(tensor_dict,
preprocessing_options)
padded_images = padded_tensor_dict[fields.InputDataFields.image]
padded_boxes = padded_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
boxes_shape = tf.shape(boxes)
padded_boxes_shape = tf.shape(padded_boxes)
images_shape = tf.shape(images)
padded_images_shape = tf.shape(padded_images)
with self.test_session() as sess:
(boxes_shape_, padded_boxes_shape_, images_shape_,
padded_images_shape_) = sess.run([
boxes_shape, padded_boxes_shape, images_shape, padded_images_shape
])
self.assertAllEqual(boxes_shape_, padded_boxes_shape_)
self.assertEqual(images_shape_[1], padded_images_shape_[1])
self.assertEqual(2 * images_shape_[2], padded_images_shape_[2])
def testRandomBlackPatches(self):
preprocessing_options = []
preprocessing_options.append((preprocessor.normalize_image, {
......@@ -1395,6 +1837,60 @@ class PreprocessorTest(tf.test.TestCase):
self.assertAllEqual(expected_images_shape_,
resized_images_shape_)
def testResizeImageWithMasks(self):
"""Tests image resizing, checking output sizes."""
in_image_shape_list = [[60, 40, 3], [15, 30, 3]]
in_masks_shape_list = [[15, 60, 40], [10, 15, 30]]
height = 50
width = 100
expected_image_shape_list = [[50, 100, 3], [50, 100, 3]]
expected_masks_shape_list = [[15, 50, 100], [10, 50, 100]]
for (in_image_shape, expected_image_shape, in_masks_shape,
expected_mask_shape) in zip(in_image_shape_list,
expected_image_shape_list,
in_masks_shape_list,
expected_masks_shape_list):
in_image = tf.random_uniform(in_image_shape)
in_masks = tf.random_uniform(in_masks_shape)
out_image, out_masks = preprocessor.resize_image(
in_image, in_masks, new_height=height, new_width=width)
out_image_shape = tf.shape(out_image)
out_masks_shape = tf.shape(out_masks)
with self.test_session() as sess:
out_image_shape, out_masks_shape = sess.run(
[out_image_shape, out_masks_shape])
self.assertAllEqual(out_image_shape, expected_image_shape)
self.assertAllEqual(out_masks_shape, expected_mask_shape)
def testResizeImageWithNoInstanceMask(self):
"""Tests image resizing, checking output sizes."""
in_image_shape_list = [[60, 40, 3], [15, 30, 3]]
in_masks_shape_list = [[0, 60, 40], [0, 15, 30]]
height = 50
width = 100
expected_image_shape_list = [[50, 100, 3], [50, 100, 3]]
expected_masks_shape_list = [[0, 50, 100], [0, 50, 100]]
for (in_image_shape, expected_image_shape, in_masks_shape,
expected_mask_shape) in zip(in_image_shape_list,
expected_image_shape_list,
in_masks_shape_list,
expected_masks_shape_list):
in_image = tf.random_uniform(in_image_shape)
in_masks = tf.random_uniform(in_masks_shape)
out_image, out_masks = preprocessor.resize_image(
in_image, in_masks, new_height=height, new_width=width)
out_image_shape = tf.shape(out_image)
out_masks_shape = tf.shape(out_masks)
with self.test_session() as sess:
out_image_shape, out_masks_shape = sess.run(
[out_image_shape, out_masks_shape])
self.assertAllEqual(out_image_shape, expected_image_shape)
self.assertAllEqual(out_masks_shape, expected_mask_shape)
def testResizeToRangePreservesStaticSpatialShape(self):
"""Tests image resizing, checking output sizes."""
in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]]
......@@ -1483,10 +1979,10 @@ class PreprocessorTest(tf.test.TestCase):
"""Tests image resizing, checking output sizes."""
in_image_shape_list = [[60, 40, 3], [15, 30, 3]]
in_masks_shape_list = [[0, 60, 40], [0, 15, 30]]
height = 50
width = 100
expected_image_shape_list = [[50, 100, 3], [50, 100, 3]]
expected_masks_shape_list = [[0, 50, 100], [0, 50, 100]]
min_dim = 50
max_dim = 100
expected_image_shape_list = [[75, 50, 3], [50, 100, 3]]
expected_masks_shape_list = [[0, 75, 50], [0, 50, 100]]
for (in_image_shape, expected_image_shape, in_masks_shape,
expected_mask_shape) in zip(in_image_shape_list,
......@@ -1495,8 +1991,8 @@ class PreprocessorTest(tf.test.TestCase):
expected_masks_shape_list):
in_image = tf.random_uniform(in_image_shape)
in_masks = tf.random_uniform(in_masks_shape)
out_image, out_masks = preprocessor.resize_image(
in_image, in_masks, new_height=height, new_width=width)
out_image, out_masks = preprocessor.resize_to_range(
in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim)
out_image_shape = tf.shape(out_image)
out_masks_shape = tf.shape(out_masks)
......@@ -1528,6 +2024,67 @@ class PreprocessorTest(tf.test.TestCase):
out_image_shape = sess.run(out_image_shape)
self.assertAllEqual(out_image_shape, expected_shape)
def testResizeToMinDimensionTensorShapes(self):
in_image_shape_list = [[60, 55, 3], [15, 30, 3]]
in_masks_shape_list = [[15, 60, 55], [10, 15, 30]]
min_dim = 50
expected_image_shape_list = [[60, 55, 3], [50, 100, 3]]
expected_masks_shape_list = [[15, 60, 55], [10, 50, 100]]
for (in_image_shape, expected_image_shape, in_masks_shape,
expected_mask_shape) in zip(in_image_shape_list,
expected_image_shape_list,
in_masks_shape_list,
expected_masks_shape_list):
in_image = tf.placeholder(tf.float32, shape=(None, None, 3))
in_masks = tf.placeholder(tf.float32, shape=(None, None, None))
in_masks = tf.random_uniform(in_masks_shape)
out_image, out_masks = preprocessor.resize_to_min_dimension(
in_image, in_masks, min_dimension=min_dim)
out_image_shape = tf.shape(out_image)
out_masks_shape = tf.shape(out_masks)
with self.test_session() as sess:
out_image_shape, out_masks_shape = sess.run(
[out_image_shape, out_masks_shape],
feed_dict={
in_image: np.random.randn(*in_image_shape),
in_masks: np.random.randn(*in_masks_shape)
})
self.assertAllEqual(out_image_shape, expected_image_shape)
self.assertAllEqual(out_masks_shape, expected_mask_shape)
def testResizeToMinDimensionWithInstanceMasksTensorOfSizeZero(self):
"""Tests image resizing, checking output sizes."""
in_image_shape_list = [[60, 40, 3], [15, 30, 3]]
in_masks_shape_list = [[0, 60, 40], [0, 15, 30]]
min_dim = 50
expected_image_shape_list = [[75, 50, 3], [50, 100, 3]]
expected_masks_shape_list = [[0, 75, 50], [0, 50, 100]]
for (in_image_shape, expected_image_shape, in_masks_shape,
expected_mask_shape) in zip(in_image_shape_list,
expected_image_shape_list,
in_masks_shape_list,
expected_masks_shape_list):
in_image = tf.random_uniform(in_image_shape)
in_masks = tf.random_uniform(in_masks_shape)
out_image, out_masks = preprocessor.resize_to_min_dimension(
in_image, in_masks, min_dimension=min_dim)
out_image_shape = tf.shape(out_image)
out_masks_shape = tf.shape(out_masks)
with self.test_session() as sess:
out_image_shape, out_masks_shape = sess.run(
[out_image_shape, out_masks_shape])
self.assertAllEqual(out_image_shape, expected_image_shape)
self.assertAllEqual(out_masks_shape, expected_mask_shape)
def testResizeToMinDimensionRaisesErrorOn4DImage(self):
image = tf.random_uniform([1, 200, 300, 3])
with self.assertRaises(ValueError):
preprocessor.resize_to_min_dimension(image, 500)
def testScaleBoxesToPixelCoordinates(self):
"""Tests box scaling, checking scaled values."""
in_shape = [60, 40, 3]
......@@ -1599,9 +2156,11 @@ class PreprocessorTest(tf.test.TestCase):
images = self.createTestImages()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels}
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
}
distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
preprocessing_options)
distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
......@@ -1633,9 +2192,11 @@ class PreprocessorTest(tf.test.TestCase):
'target_maxval': 1
}),
(preprocessor.ssd_random_crop_pad, {})]
tensor_dict = {fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels}
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
}
distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
preprocessing_options)
distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
......@@ -1655,7 +2216,10 @@ class PreprocessorTest(tf.test.TestCase):
self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
self.assertAllEqual(images_rank_, distorted_images_rank_)
def testSSDRandomCropFixedAspectRatio(self):
def _testSSDRandomCropFixedAspectRatio(self,
include_label_scores,
include_instance_masks,
include_keypoints):
images = self.createTestImages()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
......@@ -1672,54 +2236,26 @@ class PreprocessorTest(tf.test.TestCase):
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels
}
distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
preprocessing_options)
distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
distorted_boxes = distorted_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
images_rank = tf.rank(images)
distorted_images_rank = tf.rank(distorted_images)
boxes_rank = tf.rank(boxes)
distorted_boxes_rank = tf.rank(distorted_boxes)
if include_label_scores:
label_scores = self.createTestLabelScores()
tensor_dict[fields.InputDataFields.groundtruth_label_scores] = (
label_scores)
if include_instance_masks:
masks = self.createTestMasks()
tensor_dict[fields.InputDataFields.groundtruth_instance_masks] = masks
if include_keypoints:
keypoints = self.createTestKeypoints()
tensor_dict[fields.InputDataFields.groundtruth_keypoints] = keypoints
with self.test_session() as sess:
(boxes_rank_, distorted_boxes_rank_, images_rank_,
distorted_images_rank_) = sess.run(
[boxes_rank, distorted_boxes_rank, images_rank,
distorted_images_rank])
self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
self.assertAllEqual(images_rank_, distorted_images_rank_)
def testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints(self):
images = self.createTestImages()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
masks = self.createTestMasks()
keypoints = self.createTestKeypoints()
preprocessing_options = [
(preprocessor.normalize_image, {
'original_minval': 0,
'original_maxval': 255,
'target_minval': 0,
'target_maxval': 1
}),
(preprocessor.ssd_random_crop_fixed_aspect_ratio, {})]
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_instance_masks: masks,
fields.InputDataFields.groundtruth_keypoints: keypoints,
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_instance_masks=True, include_keypoints=True)
include_label_scores=include_label_scores,
include_instance_masks=include_instance_masks,
include_keypoints=include_keypoints)
distorted_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
distorted_boxes = distorted_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
images_rank = tf.rank(images)
distorted_images_rank = tf.rank(distorted_images)
boxes_rank = tf.rank(boxes)
......@@ -1733,5 +2269,20 @@ class PreprocessorTest(tf.test.TestCase):
self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
self.assertAllEqual(images_rank_, distorted_images_rank_)
def testSSDRandomCropFixedAspectRatio(self):
self._testSSDRandomCropFixedAspectRatio(include_label_scores=False,
include_instance_masks=False,
include_keypoints=False)
def testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints(self):
self._testSSDRandomCropFixedAspectRatio(include_label_scores=False,
include_instance_masks=True,
include_keypoints=True)
def testSSDRandomCropFixedAspectRatioWithLabelScoresMasksAndKeypoints(self):
self._testSSDRandomCropFixedAspectRatio(include_label_scores=True,
include_instance_masks=True,
include_keypoints=True)
if __name__ == '__main__':
tf.test.main()
......@@ -18,6 +18,7 @@
Specifies:
InputDataFields: standard fields used by reader/preprocessor/batcher.
DetectionResultFields: standard fields returned by object detector.
BoxListFields: standard field used by BoxList
TfExampleFields: standard fields for tf-example data format (go/tf-example).
"""
......@@ -41,12 +42,17 @@ class InputDataFields(object):
groundtruth_boxes: coordinates of the ground truth boxes in the image.
groundtruth_classes: box-level class labels.
groundtruth_label_types: box-level label types (e.g. explicit negative).
groundtruth_is_crowd: is the groundtruth a single object or a crowd.
groundtruth_is_crowd: [DEPRECATED, use groundtruth_group_of instead]
is the groundtruth a single object or a crowd.
groundtruth_area: area of a groundtruth segment.
groundtruth_difficult: is a `difficult` object
groundtruth_group_of: is a `group_of` objects, e.g. multiple objects of the
same class, forming a connected group, where instances are heavily
occluding each other.
proposal_boxes: coordinates of object proposal boxes.
proposal_objectness: objectness score of each proposal.
groundtruth_instance_masks: ground truth instance masks.
groundtruth_instance_boundaries: ground truth instance boundaries.
groundtruth_instance_classes: instance mask-level class labels.
groundtruth_keypoints: ground truth keypoints.
groundtruth_keypoint_visibilities: ground truth keypoint visibilities.
......@@ -64,15 +70,43 @@ class InputDataFields(object):
groundtruth_is_crowd = 'groundtruth_is_crowd'
groundtruth_area = 'groundtruth_area'
groundtruth_difficult = 'groundtruth_difficult'
groundtruth_group_of = 'groundtruth_group_of'
proposal_boxes = 'proposal_boxes'
proposal_objectness = 'proposal_objectness'
groundtruth_instance_masks = 'groundtruth_instance_masks'
groundtruth_instance_boundaries = 'groundtruth_instance_boundaries'
groundtruth_instance_classes = 'groundtruth_instance_classes'
groundtruth_keypoints = 'groundtruth_keypoints'
groundtruth_keypoint_visibilities = 'groundtruth_keypoint_visibilities'
groundtruth_label_scores = 'groundtruth_label_scores'
class DetectionResultFields(object):
"""Naming converntions for storing the output of the detector.
Attributes:
source_id: source of the original image.
key: unique key corresponding to image.
detection_boxes: coordinates of the detection boxes in the image.
detection_scores: detection scores for the detection boxes in the image.
detection_classes: detection-level class labels.
detection_masks: contains a segmentation mask for each detection box.
detection_boundaries: contains an object boundary for each detection box.
detection_keypoints: contains detection keypoints for each detection box.
num_detections: number of detections in the batch.
"""
source_id = 'source_id'
key = 'key'
detection_boxes = 'detection_boxes'
detection_scores = 'detection_scores'
detection_classes = 'detection_classes'
detection_masks = 'detection_masks'
detection_boundaries = 'detection_boundaries'
detection_keypoints = 'detection_keypoints'
num_detections = 'num_detections'
class BoxListFields(object):
"""Naming conventions for BoxLists.
......@@ -83,6 +117,7 @@ class BoxListFields(object):
weights: sample weights per bounding box.
objectness: objectness score per bounding box.
masks: masks per bounding box.
boundaries: boundaries per bounding box.
keypoints: keypoints per bounding box.
keypoint_heatmaps: keypoint heatmaps per bounding box.
"""
......@@ -92,6 +127,7 @@ class BoxListFields(object):
weights = 'weights'
objectness = 'objectness'
masks = 'masks'
boundaries = 'boundaries'
keypoints = 'keypoints'
keypoint_heatmaps = 'keypoint_heatmaps'
......@@ -112,7 +148,7 @@ class TfExampleFields(object):
width: width of image in pixels, e.g. 581
source_id: original source of the image
object_class_text: labels in text format, e.g. ["person", "cat"]
object_class_text: labels in numbers, e.g. [16, 8]
object_class_label: labels in numbers, e.g. [16, 8]
object_bbox_xmin: xmin coordinates of groundtruth box, e.g. 10, 30
object_bbox_xmax: xmax coordinates of groundtruth box, e.g. 50, 40
object_bbox_ymin: ymin coordinates of groundtruth box, e.g. 40, 50
......@@ -121,10 +157,20 @@ class TfExampleFields(object):
object_truncated: is object truncated, e.g. [true, false]
object_occluded: is object occluded, e.g. [true, false]
object_difficult: is object difficult, e.g. [true, false]
object_is_crowd: is the object a single object or a crowd
object_group_of: is object a single object or a group of objects
object_depiction: is object a depiction
object_is_crowd: [DEPRECATED, use object_group_of instead]
is the object a single object or a crowd
object_segment_area: the area of the segment.
instance_masks: instance segmentation masks.
instance_boundaries: instance boundaries.
instance_classes: Classes for each instance segmentation mask.
detection_class_label: class label in numbers.
detection_bbox_ymin: ymin coordinates of a detection box.
detection_bbox_xmin: xmin coordinates of a detection box.
detection_bbox_ymax: ymax coordinates of a detection box.
detection_bbox_xmax: xmax coordinates of a detection box.
detection_score: detection score for the class label and box.
"""
image_encoded = 'image/encoded'
image_format = 'image/format' # format is reserved keyword
......@@ -144,7 +190,16 @@ class TfExampleFields(object):
object_truncated = 'image/object/truncated'
object_occluded = 'image/object/occluded'
object_difficult = 'image/object/difficult'
object_group_of = 'image/object/group_of'
object_depiction = 'image/object/depiction'
object_is_crowd = 'image/object/is_crowd'
object_segment_area = 'image/object/segment/area'
instance_masks = 'image/segmentation/object'
instance_boundaries = 'image/boundaries/object'
instance_classes = 'image/segmentation/object/class'
detection_class_label = 'image/detection/label'
detection_bbox_ymin = 'image/detection/bbox/ymin'
detection_bbox_xmin = 'image/detection/bbox/xmin'
detection_bbox_ymax = 'image/detection/bbox/ymax'
detection_bbox_xmax = 'image/detection/bbox/xmax'
detection_score = 'image/detection/score'
......@@ -50,7 +50,7 @@ class TargetAssigner(object):
def __init__(self, similarity_calc, matcher, box_coder,
positive_class_weight=1.0, negative_class_weight=1.0,
unmatched_cls_target=None):
"""Construct Multibox Target Assigner.
"""Construct Object Detection Target Assigner.
Args:
similarity_calc: a RegionSimilarityCalculator
......@@ -108,7 +108,7 @@ class TargetAssigner(object):
Args:
anchors: a BoxList representing N anchors
groundtruth_boxes: a BoxList representing M groundtruth boxes
groundtruth_labels: a tensor of shape [num_gt_boxes, d_1, ... d_k]
groundtruth_labels: a tensor of shape [M, d_1, ... d_k]
with labels for each of the ground_truth boxes. The subshape
[d_1, ... d_k] can be empty (corresponding to scalar inputs). When set
to None, groundtruth_labels assumes a binary problem where all
......@@ -140,10 +140,16 @@ class TargetAssigner(object):
groundtruth_labels = tf.ones(tf.expand_dims(groundtruth_boxes.num_boxes(),
0))
groundtruth_labels = tf.expand_dims(groundtruth_labels, -1)
shape_assert = tf.assert_equal(tf.shape(groundtruth_labels)[1:],
tf.shape(self._unmatched_cls_target))
with tf.control_dependencies([shape_assert]):
unmatched_shape_assert = tf.assert_equal(
tf.shape(groundtruth_labels)[1:], tf.shape(self._unmatched_cls_target),
message='Unmatched class target shape incompatible '
'with groundtruth labels shape!')
labels_and_box_shapes_assert = tf.assert_equal(
tf.shape(groundtruth_labels)[0], groundtruth_boxes.num_boxes(),
message='Groundtruth boxes and labels have incompatible shapes!')
with tf.control_dependencies(
[unmatched_shape_assert, labels_and_box_shapes_assert]):
match_quality_matrix = self._similarity_calc.compare(groundtruth_boxes,
anchors)
match = self._matcher.match(match_quality_matrix, **params)
......@@ -316,8 +322,8 @@ class TargetAssigner(object):
return self._box_coder
# TODO: This method pulls in all the implementation dependencies into core.
# Therefore its best to have this factory method outside of core.
# TODO: This method pulls in all the implementation dependencies into
# core. Therefore its best to have this factory method outside of core.
def create_target_assigner(reference, stage=None,
positive_class_weight=1.0,
negative_class_weight=1.0,
......
......@@ -327,6 +327,41 @@ class TargetAssignerTest(tf.test.TestCase):
self.assertEquals(reg_weights_out.dtype, np.float32)
self.assertEquals(matching_anchors_out.dtype, np.int32)
def test_raises_error_on_incompatible_groundtruth_boxes_and_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0],
[.75, 0, 1.0, .25]])
prior_stddevs = tf.constant(4 * [4 * [.1]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.0, 0.0, 0.5, 0.8],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0]], tf.float32)
result = target_assigner.assign(priors, boxes, groundtruth_labels,
num_valid_rows=3)
(cls_targets, cls_weights, reg_targets, reg_weights, _) = result
with self.test_session() as sess:
with self.assertRaisesWithPredicateMatch(
tf.errors.InvalidArgumentError,
'Groundtruth boxes and labels have incompatible shapes!'):
sess.run([cls_targets, cls_weights, reg_targets, reg_weights])
def test_raises_error_on_invalid_groundtruth_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment