Commit e55c1f42 authored by Chen Chen's avatar Chen Chen Committed by A. Unique TensorFlower
Browse files

Split export_tfhub.py and add export_albert_tfhub to albert folder.

PiperOrigin-RevId: 293883773
parent cfb2553d
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A script to export the ALBERT core model as a TF-Hub SavedModel."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
from absl import app
from absl import flags
import tensorflow as tf
from typing import Text
from official.nlp import bert_modeling
from official.nlp.bert import bert_models
FLAGS = flags.FLAGS
flags.DEFINE_string("albert_config_file", None,
"Albert configuration file to define core albert layers.")
flags.DEFINE_string("model_checkpoint_path", None,
"File path to TF model checkpoint.")
flags.DEFINE_string("export_path", None, "TF-Hub SavedModel destination path.")
flags.DEFINE_string(
"sp_model_file", None,
"The sentence piece model file that the ALBERT model was trained on.")
def create_albert_model(
albert_config: bert_modeling.AlbertConfig) -> tf.keras.Model:
"""Creates an ALBERT keras core model from ALBERT configuration.
Args:
albert_config: An `AlbertConfig` to create the core model.
Returns:
A keras model.
"""
# Adds input layers just as placeholders.
input_word_ids = tf.keras.layers.Input(
shape=(None,), dtype=tf.int32, name="input_word_ids")
input_mask = tf.keras.layers.Input(
shape=(None,), dtype=tf.int32, name="input_mask")
input_type_ids = tf.keras.layers.Input(
shape=(None,), dtype=tf.int32, name="input_type_ids")
transformer_encoder = bert_models.get_transformer_encoder(
albert_config, sequence_length=None, float_dtype=tf.float32)
sequence_output, pooled_output = transformer_encoder(
[input_word_ids, input_mask, input_type_ids])
# To keep consistent with legacy hub modules, the outputs are
# "pooled_output" and "sequence_output".
return tf.keras.Model(
inputs=[input_word_ids, input_mask, input_type_ids],
outputs=[pooled_output, sequence_output]), transformer_encoder
def export_albert_tfhub(albert_config: bert_modeling.AlbertConfig,
model_checkpoint_path: Text, hub_destination: Text,
sp_model_file: Text):
"""Restores a tf.keras.Model and saves for TF-Hub."""
core_model, encoder = create_albert_model(albert_config)
checkpoint = tf.train.Checkpoint(model=encoder)
checkpoint.restore(model_checkpoint_path).assert_consumed()
core_model.sp_model_file = tf.saved_model.Asset(sp_model_file)
core_model.save(hub_destination, include_optimizer=False, save_format="tf")
def main(_):
assert tf.version.VERSION.startswith('2.')
albert_config = bert_modeling.AlbertConfig.from_json_file(
FLAGS.albert_config_file)
export_albert_tfhub(albert_config, FLAGS.model_checkpoint_path,
FLAGS.export_path, FLAGS.sp_model_file)
if __name__ == "__main__":
app.run(main)
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests official.nlp.albert.export_albert_tfhub."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
from official.nlp import bert_modeling
from official.nlp.albert import export_albert_tfhub
class ExportAlbertTfhubTest(tf.test.TestCase):
def test_export_albert_tfhub(self):
# Exports a savedmodel for TF-Hub
albert_config = bert_modeling.AlbertConfig(
vocab_size=100,
embedding_size=8,
hidden_size=16,
intermediate_size=32,
max_position_embeddings=128,
num_attention_heads=2,
num_hidden_layers=1)
bert_model, encoder = export_albert_tfhub.create_albert_model(albert_config)
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
checkpoint = tf.train.Checkpoint(model=encoder)
checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)
sp_model_file = os.path.join(self.get_temp_dir(), "sp_tokenizer.model")
with tf.io.gfile.GFile(sp_model_file, "w") as f:
f.write("dummy content")
hub_destination = os.path.join(self.get_temp_dir(), "hub")
export_albert_tfhub.export_albert_tfhub(
albert_config,
model_checkpoint_path,
hub_destination,
sp_model_file=sp_model_file)
# Restores a hub KerasLayer.
hub_layer = hub.KerasLayer(hub_destination, trainable=True)
if hasattr(hub_layer, "resolved_object"):
with tf.io.gfile.GFile(
hub_layer.resolved_object.sp_model_file.asset_path.numpy()) as f:
self.assertEqual("dummy content", f.read())
# Checks the hub KerasLayer.
for source_weight, hub_weight in zip(bert_model.trainable_weights,
hub_layer.trainable_weights):
self.assertAllClose(source_weight.numpy(), hub_weight.numpy())
dummy_ids = np.zeros((2, 10), dtype=np.int32)
hub_outputs = hub_layer([dummy_ids, dummy_ids, dummy_ids])
source_outputs = bert_model([dummy_ids, dummy_ids, dummy_ids])
# The outputs of hub module are "pooled_output" and "sequence_output",
# while the outputs of encoder is in reversed order, i.e.,
# "sequence_output" and "pooled_output".
encoder_outputs = reversed(encoder([dummy_ids, dummy_ids, dummy_ids]))
self.assertEqual(hub_outputs[0].shape, (2, 16))
self.assertEqual(hub_outputs[1].shape, (2, 10, 16))
for source_output, hub_output, encoder_output in zip(
source_outputs, hub_outputs, encoder_outputs):
self.assertAllClose(source_output.numpy(), hub_output.numpy())
self.assertAllClose(source_output.numpy(), encoder_output.numpy())
if __name__ == "__main__":
assert tf.version.VERSION.startswith('2.')
tf.test.main()
......@@ -21,7 +21,7 @@ from __future__ import print_function
from absl import app
from absl import flags
import tensorflow as tf
from typing import Optional, Text
from typing import Text
from official.nlp import bert_modeling
from official.nlp.bert import bert_models
......@@ -35,20 +35,13 @@ flags.DEFINE_string("model_checkpoint_path", None,
flags.DEFINE_string("export_path", None, "TF-Hub SavedModel destination path.")
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string("sp_model_file", None,
"The sentence piece model file that the ALBERT model was "
"trained on.")
flags.DEFINE_enum(
"model_type", "bert", ["bert", "albert"],
"Specifies the type of the model. "
"If 'bert', will use canonical BERT; if 'albert', will use ALBERT model.")
def create_bert_model(bert_config: bert_modeling.BertConfig):
def create_bert_model(bert_config: bert_modeling.BertConfig) -> tf.keras.Model:
"""Creates a BERT keras core model from BERT configuration.
Args:
bert_config: A BertConfig` to create the core model.
bert_config: A `BertConfig` to create the core model.
Returns:
A keras model.
......@@ -72,23 +65,12 @@ def create_bert_model(bert_config: bert_modeling.BertConfig):
def export_bert_tfhub(bert_config: bert_modeling.BertConfig,
model_checkpoint_path: Text,
hub_destination: Text,
vocab_file: Optional[Text] = None,
sp_model_file: Optional[Text] = None):
model_checkpoint_path: Text, hub_destination: Text,
vocab_file: Text):
"""Restores a tf.keras.Model and saves for TF-Hub."""
core_model, encoder = create_bert_model(bert_config)
checkpoint = tf.train.Checkpoint(model=encoder)
checkpoint.restore(model_checkpoint_path).assert_consumed()
if isinstance(bert_config, bert_modeling.AlbertConfig):
if not sp_model_file:
raise ValueError("sp_model_file is required.")
core_model.sp_model_file = tf.saved_model.Asset(sp_model_file)
else:
assert isinstance(bert_config, bert_modeling.BertConfig)
if not vocab_file:
raise ValueError("vocab_file is required.")
core_model.vocab_file = tf.saved_model.Asset(vocab_file)
core_model.do_lower_case = tf.Variable(
"uncased" in vocab_file, trainable=False)
......@@ -97,14 +79,9 @@ def export_bert_tfhub(bert_config: bert_modeling.BertConfig,
def main(_):
assert tf.version.VERSION.startswith('2.')
config_cls = {
"bert": bert_modeling.BertConfig,
"albert": bert_modeling.AlbertConfig,
}
bert_config = config_cls[FLAGS.model_type].from_json_file(
FLAGS.bert_config_file)
bert_config = bert_modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
export_bert_tfhub(bert_config, FLAGS.model_checkpoint_path, FLAGS.export_path,
FLAGS.vocab_file, FLAGS.sp_model_file)
FLAGS.vocab_file)
if __name__ == "__main__":
......
......@@ -82,57 +82,6 @@ class ExportTfhubTest(tf.test.TestCase):
self.assertAllClose(source_output.numpy(), hub_output.numpy())
self.assertAllClose(source_output.numpy(), encoder_output.numpy())
def test_export_albert_tfhub(self):
# Exports a savedmodel for TF-Hub
bert_config = bert_modeling.AlbertConfig(
vocab_size=100,
embedding_size=8,
hidden_size=16,
intermediate_size=32,
max_position_embeddings=128,
num_attention_heads=2,
num_hidden_layers=1)
bert_model, encoder = export_tfhub.create_bert_model(bert_config)
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
checkpoint = tf.train.Checkpoint(model=encoder)
checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)
sp_model_file = os.path.join(self.get_temp_dir(), "sp_tokenizer.model")
with tf.io.gfile.GFile(sp_model_file, "w") as f:
f.write("dummy content")
hub_destination = os.path.join(self.get_temp_dir(), "hub")
export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path,
hub_destination, sp_model_file=sp_model_file)
# Restores a hub KerasLayer.
hub_layer = hub.KerasLayer(hub_destination, trainable=True)
if hasattr(hub_layer, "resolved_object"):
with tf.io.gfile.GFile(
hub_layer.resolved_object.sp_model_file.asset_path.numpy()) as f:
self.assertEqual("dummy content", f.read())
# Checks the hub KerasLayer.
for source_weight, hub_weight in zip(bert_model.trainable_weights,
hub_layer.trainable_weights):
self.assertAllClose(source_weight.numpy(), hub_weight.numpy())
dummy_ids = np.zeros((2, 10), dtype=np.int32)
hub_outputs = hub_layer([dummy_ids, dummy_ids, dummy_ids])
source_outputs = bert_model([dummy_ids, dummy_ids, dummy_ids])
# The outputs of hub module are "pooled_output" and "sequence_output",
# while the outputs of encoder is in reversed order, i.e.,
# "sequence_output" and "pooled_output".
encoder_outputs = reversed(encoder([dummy_ids, dummy_ids, dummy_ids]))
self.assertEqual(hub_outputs[0].shape, (2, 16))
self.assertEqual(hub_outputs[1].shape, (2, 10, 16))
for source_output, hub_output, encoder_output in zip(
source_outputs, hub_outputs, encoder_outputs):
self.assertAllClose(source_output.numpy(), hub_output.numpy())
self.assertAllClose(source_output.numpy(), encoder_output.numpy())
if __name__ == "__main__":
assert tf.version.VERSION.startswith('2.')
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment