Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
e4be7e00
Commit
e4be7e00
authored
Mar 25, 2022
by
Yeqing Li
Committed by
A. Unique TensorFlower
Mar 25, 2022
Browse files
Removes unneeded content of the beta folder.
PiperOrigin-RevId: 437276665
parent
f47405b5
Changes
235
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
0 additions
and
1161 deletions
+0
-1161
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs152_i224.yaml
...ments/image_classification/imagenet_resnetrs152_i224.yaml
+0
-64
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs152_i256.yaml
...ments/image_classification/imagenet_resnetrs152_i256.yaml
+0
-64
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs200_i256.yaml
...ments/image_classification/imagenet_resnetrs200_i256.yaml
+0
-64
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs270_i256.yaml
...ments/image_classification/imagenet_resnetrs270_i256.yaml
+0
-64
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs350_i256.yaml
...ments/image_classification/imagenet_resnetrs350_i256.yaml
+0
-64
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs350_i320.yaml
...ments/image_classification/imagenet_resnetrs350_i320.yaml
+0
-64
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs420_i320.yaml
...ments/image_classification/imagenet_resnetrs420_i320.yaml
+0
-63
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs50_i160.yaml
...iments/image_classification/imagenet_resnetrs50_i160.yaml
+0
-64
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet143_cascadercnn_tpu.yaml
...xperiments/maskrcnn/coco_spinenet143_cascadercnn_tpu.yaml
+0
-58
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet143_mrcnn_tpu.yaml
...figs/experiments/maskrcnn/coco_spinenet143_mrcnn_tpu.yaml
+0
-47
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet49_cascadercnn_tpu.yaml
...experiments/maskrcnn/coco_spinenet49_cascadercnn_tpu.yaml
+0
-58
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet49_mrcnn_tpu.yaml
...nfigs/experiments/maskrcnn/coco_spinenet49_mrcnn_tpu.yaml
+0
-47
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet96_cascadercnn_tpu.yaml
...experiments/maskrcnn/coco_spinenet96_cascadercnn_tpu.yaml
+0
-58
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet96_mrcnn_tpu.yaml
...nfigs/experiments/maskrcnn/coco_spinenet96_mrcnn_tpu.yaml
+0
-47
official/vision/beta/configs/experiments/maskrcnn/r50fpn_640_coco_scratch_tpu4x4.yaml
.../experiments/maskrcnn/r50fpn_640_coco_scratch_tpu4x4.yaml
+0
-36
official/vision/beta/configs/experiments/retinanet/coco_mobiledetcpu_tpu.yaml
.../configs/experiments/retinanet/coco_mobiledetcpu_tpu.yaml
+0
-62
official/vision/beta/configs/experiments/retinanet/coco_mobilenetv2_tpu.yaml
...a/configs/experiments/retinanet/coco_mobilenetv2_tpu.yaml
+0
-62
official/vision/beta/configs/experiments/retinanet/coco_spinenet143_tpu.yaml
...a/configs/experiments/retinanet/coco_spinenet143_tpu.yaml
+0
-58
official/vision/beta/configs/experiments/retinanet/coco_spinenet190_tpu.yaml
...a/configs/experiments/retinanet/coco_spinenet190_tpu.yaml
+0
-57
official/vision/beta/configs/experiments/retinanet/coco_spinenet49_mobile_tpu.yaml
...igs/experiments/retinanet/coco_spinenet49_mobile_tpu.yaml
+0
-60
No files found.
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs152_i224.yaml
deleted
100644 → 0
View file @
f47405b5
# ResNet-RS-152 ImageNet classification. 82.5% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
224
,
224
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
152
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.0
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs152_i256.yaml
deleted
100644 → 0
View file @
f47405b5
# ResNet-RS-152 ImageNet classification. 83.1% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
256
,
256
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
152
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.0
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs200_i256.yaml
deleted
100644 → 0
View file @
f47405b5
# ResNet-RS-200 ImageNet classification. 83.5% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
256
,
256
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
200
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.1
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs270_i256.yaml
deleted
100644 → 0
View file @
f47405b5
# ResNet-RS-270 ImageNet classification. 83.6% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
256
,
256
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
270
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.1
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs350_i256.yaml
deleted
100644 → 0
View file @
f47405b5
# ResNet-RS-350 ImageNet classification. 83.7% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
256
,
256
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
350
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.1
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs350_i320.yaml
deleted
100644 → 0
View file @
f47405b5
# ResNet-RS-350 ImageNet classification. 84.2% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
320
,
320
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
350
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.1
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.4
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs420_i320.yaml
deleted
100644 → 0
View file @
f47405b5
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
320
,
320
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
420
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.1
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.4
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
15
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/beta/configs/experiments/image_classification/imagenet_resnetrs50_i160.yaml
deleted
100644 → 0
View file @
f47405b5
# ResNet-RS-50 ImageNet classification. 79.1% top-1 accuracy.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
num_classes
:
1001
input_size
:
[
160
,
160
,
3
]
backbone
:
type
:
'
resnet'
resnet
:
model_id
:
50
replace_stem_max_pool
:
true
resnetd_shortcut
:
true
se_ratio
:
0.25
stem_type
:
'
v1'
stochastic_depth_drop_rate
:
0.0
norm_activation
:
activation
:
'
swish'
norm_momentum
:
0.0
use_sync_bn
:
false
dropout_rate
:
0.25
losses
:
l2_weight_decay
:
0.00004
one_hot
:
true
label_smoothing
:
0.1
train_data
:
input_path
:
'
imagenet-2012-tfrecord/train*'
is_training
:
true
global_batch_size
:
4096
dtype
:
'
bfloat16'
aug_type
:
type
:
'
randaug'
randaug
:
magnitude
:
10
validation_data
:
input_path
:
'
imagenet-2012-tfrecord/valid*'
is_training
:
false
global_batch_size
:
4096
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
train_steps
:
109200
validation_steps
:
13
validation_interval
:
312
steps_per_loop
:
312
summary_interval
:
312
checkpoint_interval
:
312
optimizer_config
:
ema
:
average_decay
:
0.9999
optimizer
:
type
:
'
sgd'
sgd
:
momentum
:
0.9
learning_rate
:
type
:
'
cosine'
cosine
:
initial_learning_rate
:
1.6
decay_steps
:
109200
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
1560
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet143_cascadercnn_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 51.9%, mask mAP: 45.0% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.5
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
4.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
1280
,
1280
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
143'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
detection_head
:
cascade_class_ensemble
:
true
class_agnostic_bbox_pred
:
true
rpn_head
:
num_convs
:
2
num_filters
:
256
roi_sampler
:
cascade_iou_thresholds
:
[
0.7
]
foreground_iou_threshold
:
0.6
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
activation
:
'
swish'
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet143_mrcnn_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
# Expect to reach: box mAP: 49.3%, mask mAP: 43.4% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.0
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
4.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
1280
,
1280
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
143'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet49_cascadercnn_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 46.4%, mask mAP: 40.0% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.0
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
3.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
640
,
640
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
49'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
detection_head
:
cascade_class_ensemble
:
true
class_agnostic_bbox_pred
:
true
rpn_head
:
num_convs
:
2
num_filters
:
256
roi_sampler
:
cascade_iou_thresholds
:
[
0.7
]
foreground_iou_threshold
:
0.6
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
activation
:
'
swish'
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet49_mrcnn_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
# Expect to reach: box mAP: 43.2%, mask mAP: 38.3% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.0
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
3.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
640
,
640
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
49'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet96_cascadercnn_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 51.9%, mask mAP: 45.0% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.5
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
4.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
1024
,
1024
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
96'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
detection_head
:
cascade_class_ensemble
:
true
class_agnostic_bbox_pred
:
true
rpn_head
:
num_convs
:
2
num_filters
:
256
roi_sampler
:
cascade_iou_thresholds
:
[
0.7
]
foreground_iou_threshold
:
0.6
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
activation
:
'
swish'
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/beta/configs/experiments/maskrcnn/coco_spinenet96_mrcnn_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
# Expect to reach: box mAP: 48.1%, mask mAP: 42.4% on COCO
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.1
aug_scale_max
:
2.0
losses
:
l2_weight_decay
:
0.00004
model
:
anchor
:
anchor_size
:
3.0
num_scales
:
3
min_level
:
3
max_level
:
7
input_size
:
[
1024
,
1024
,
3
]
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
96'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
231000
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/beta/configs/experiments/maskrcnn/r50fpn_640_coco_scratch_tpu4x4.yaml
deleted
100644 → 0
View file @
f47405b5
# Expect to reach: box mAP: 42.3%, mask mAP: 37.6% on COCO
task
:
init_checkpoint
:
null
train_data
:
global_batch_size
:
256
parser
:
aug_rand_hflip
:
true
aug_scale_min
:
0.5
aug_scale_max
:
2.0
losses
:
l2_weight_decay
:
0.00008
model
:
anchor
:
anchor_size
:
3.0
min_level
:
3
max_level
:
7
input_size
:
[
640
,
640
,
3
]
norm_activation
:
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
detection_generator
:
pre_nms_top_k
:
1000
trainer
:
train_steps
:
162050
optimizer_config
:
learning_rate
:
type
:
'
stepwise'
stepwise
:
boundaries
:
[
148160
,
157420
]
values
:
[
0.32
,
0.032
,
0.0032
]
warmup
:
type
:
'
linear'
linear
:
warmup_steps
:
2000
warmup_learning_rate
:
0.0067
official/vision/beta/configs/experiments/retinanet/coco_mobiledetcpu_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
# --experiment_type=retinanet_mobile_coco
# COCO AP 27.0%
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
losses
:
l2_weight_decay
:
3.0e-05
model
:
anchor
:
anchor_size
:
3
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
num_scales
:
3
backbone
:
mobilenet
:
model_id
:
'
MobileDetCPU'
filter_size_scale
:
1.0
type
:
'
mobiledet'
decoder
:
type
:
'
fpn'
fpn
:
num_filters
:
128
use_separable_conv
:
true
head
:
num_convs
:
4
num_filters
:
128
use_separable_conv
:
true
input_size
:
[
320 320
,
3
]
max_level
:
6
min_level
:
3
norm_activation
:
activation
:
'
relu6'
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
train_data
:
dtype
:
'
bfloat16'
global_batch_size
:
256
is_training
:
true
parser
:
aug_rand_hflip
:
true
aug_scale_max
:
2.0
aug_scale_min
:
0.5
validation_data
:
dtype
:
'
bfloat16'
global_batch_size
:
8
is_training
:
false
trainer
:
optimizer_config
:
learning_rate
:
stepwise
:
boundaries
:
[
263340
,
272580
]
values
:
[
0.32
,
0.032
,
0.0032
]
type
:
'
stepwise'
warmup
:
linear
:
warmup_learning_rate
:
0.0067
warmup_steps
:
2000
steps_per_loop
:
462
train_steps
:
277200
validation_interval
:
462
validation_steps
:
625
official/vision/beta/configs/experiments/retinanet/coco_mobilenetv2_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
# --experiment_type=retinanet_mobile_coco
# COCO AP 23.5%
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
losses
:
l2_weight_decay
:
3.0e-05
model
:
anchor
:
anchor_size
:
3
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
num_scales
:
3
backbone
:
mobilenet
:
model_id
:
'
MobileNetV2'
filter_size_scale
:
1.0
type
:
'
mobilenet'
decoder
:
type
:
'
fpn'
fpn
:
num_filters
:
128
use_separable_conv
:
true
head
:
num_convs
:
4
num_filters
:
128
use_separable_conv
:
true
input_size
:
[
256
,
256
,
3
]
max_level
:
7
min_level
:
3
norm_activation
:
activation
:
'
relu6'
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
train_data
:
dtype
:
'
bfloat16'
global_batch_size
:
256
is_training
:
true
parser
:
aug_rand_hflip
:
true
aug_scale_max
:
2.0
aug_scale_min
:
0.5
validation_data
:
dtype
:
'
bfloat16'
global_batch_size
:
8
is_training
:
false
trainer
:
optimizer_config
:
learning_rate
:
stepwise
:
boundaries
:
[
263340
,
272580
]
values
:
[
0.32
,
0.032
,
0.0032
]
type
:
'
stepwise'
warmup
:
linear
:
warmup_learning_rate
:
0.0067
warmup_steps
:
2000
steps_per_loop
:
462
train_steps
:
277200
validation_interval
:
462
validation_steps
:
625
official/vision/beta/configs/experiments/retinanet/coco_spinenet143_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
# SpineNet-143 COCO detection with protocal C config. Expecting 50.0% AP.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
losses
:
l2_weight_decay
:
4.0e-05
model
:
anchor
:
anchor_size
:
4
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
num_scales
:
3
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
143'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
head
:
num_convs
:
4
num_filters
:
256
input_size
:
[
1280
,
1280
,
3
]
max_level
:
7
min_level
:
3
norm_activation
:
activation
:
'
swish'
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
train_data
:
dtype
:
'
bfloat16'
global_batch_size
:
256
is_training
:
true
parser
:
aug_rand_hflip
:
true
aug_scale_max
:
2.0
aug_scale_min
:
0.1
validation_data
:
dtype
:
'
bfloat16'
global_batch_size
:
8
is_training
:
false
trainer
:
checkpoint_interval
:
462
optimizer_config
:
learning_rate
:
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
type
:
'
stepwise'
warmup
:
linear
:
warmup_learning_rate
:
0.0067
warmup_steps
:
2000
steps_per_loop
:
462
train_steps
:
231000
validation_interval
:
462
validation_steps
:
625
official/vision/beta/configs/experiments/retinanet/coco_spinenet190_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
losses
:
l2_weight_decay
:
4.0e-05
model
:
anchor
:
anchor_size
:
4
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
num_scales
:
3
backbone
:
spinenet
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
190'
type
:
'
spinenet'
decoder
:
type
:
'
identity'
head
:
num_convs
:
7
num_filters
:
512
input_size
:
[
1280
,
1280
,
3
]
max_level
:
7
min_level
:
3
norm_activation
:
activation
:
'
swish'
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
train_data
:
dtype
:
'
bfloat16'
global_batch_size
:
256
is_training
:
true
parser
:
aug_rand_hflip
:
true
aug_scale_max
:
2.0
aug_scale_min
:
0.1
validation_data
:
dtype
:
'
bfloat16'
global_batch_size
:
8
is_training
:
false
trainer
:
checkpoint_interval
:
462
optimizer_config
:
learning_rate
:
stepwise
:
boundaries
:
[
219450
,
226380
]
values
:
[
0.32
,
0.032
,
0.0032
]
type
:
'
stepwise'
warmup
:
linear
:
warmup_learning_rate
:
0.0067
warmup_steps
:
2000
steps_per_loop
:
462
train_steps
:
231000
validation_interval
:
462
validation_steps
:
625
official/vision/beta/configs/experiments/retinanet/coco_spinenet49_mobile_tpu.yaml
deleted
100644 → 0
View file @
f47405b5
# --experiment_type=retinanet_mobile_coco
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
losses
:
l2_weight_decay
:
3.0e-05
model
:
anchor
:
anchor_size
:
3
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
num_scales
:
3
backbone
:
spinenet_mobile
:
stochastic_depth_drop_rate
:
0.2
model_id
:
'
49'
se_ratio
:
0.2
type
:
'
spinenet_mobile'
decoder
:
type
:
'
identity'
head
:
num_convs
:
4
num_filters
:
48
use_separable_conv
:
true
input_size
:
[
384
,
384
,
3
]
max_level
:
7
min_level
:
3
norm_activation
:
activation
:
'
swish'
norm_epsilon
:
0.001
norm_momentum
:
0.99
use_sync_bn
:
true
train_data
:
dtype
:
'
bfloat16'
global_batch_size
:
256
is_training
:
true
parser
:
aug_rand_hflip
:
true
aug_scale_max
:
2.0
aug_scale_min
:
0.5
validation_data
:
dtype
:
'
bfloat16'
global_batch_size
:
8
is_training
:
false
trainer
:
checkpoint_interval
:
462
optimizer_config
:
learning_rate
:
stepwise
:
boundaries
:
[
263340
,
272580
]
values
:
[
0.32
,
0.032
,
0.0032
]
type
:
'
stepwise'
warmup
:
linear
:
warmup_learning_rate
:
0.0067
warmup_steps
:
2000
steps_per_loop
:
462
train_steps
:
277200
validation_interval
:
462
validation_steps
:
625
Prev
1
2
3
4
5
6
…
12
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment