"docs/zh_cn/tutorials/index.rst" did not exist on "bf4e71c20ef3e46ea37035a038c311821fce9d6b"
Unverified Commit e404b51e authored by Jonathan juhl's avatar Jonathan juhl Committed by GitHub
Browse files

Add files via upload

processes all crystal growth images in directory and  sub directories and prints results to console, and a comma seperated file. Removes dependencies of google SDK(only dependent on tensorflow and python 2.7)
parent b07b494e
#!/usr/bin/python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
import csv
import os
import argparse
"""
usage:
Processes all .jpg, .png, .bmp and .gif files found in the specified directory and its subdirectories.
--PATH ( Path to directory of images or path to directory with subdirectory of images). e.g Path/To/Directory/
--Model_PATH path to the tensorflow model
"""
parser = argparse.ArgumentParser(description='Crystal Detection Program')
parser.add_argument('--PATH', type=str, help='path to image directory. Recursively finds all image files in directory and sub directories') # path to image directory or containing sub directories.
parser.add_argument('--MODEL_PATH', type=str, default='./savedmodel',help='the file path to the tensorflow model ')
args = vars(parser.parse_args())
PATH = args['PATH']
model_path = args['MODEL_PATH']
crystal_images = [os.path.join(dp, f) for dp, dn, filenames in os.walk(PATH) for f in filenames if os.path.splitext(f)[1] in ['.jpg','png','bmp','gif']]
size = len(crystal_images)
def load_images(file_list):
for i in file_list:
file = open(i)
yield {"image_bytes":[file.read()]},i
iterator = load_images(crystal_images)
with open(PATH +'results.csv', 'w') as csvfile:
Writer = csv.writer(csvfile, delimiter=' ',quotechar=' ', quoting=csv.QUOTE_MINIMAL)
predicter= tf.contrib.predictor.from_saved_model(model_path)
dic = {}
k = 0
for _ in range(size):
data,name = next(iterator)
results = predicter(data)
vals =results['scores'][0]
vals = vals*100
print('Image path: '+ name,'Crystal: '+str(vals[0]),'Other: '+ str(vals[1]),'Precipitate: '+ str(vals[2]),'Clear '+ str(vals[3]))
Writer.writerow(['Image path: '+ name,'Crystal: '+str(vals[0]),'Other: '+ str(vals[1]),'Precipitate: '+ str(vals[2]),'Clear: '+ str(vals[3])])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment