Commit e293e338 authored by Yeqing Li's avatar Yeqing Li Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 413981781
parent aa6aed37
This diff is collapsed.
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Util functions related to pycocotools and COCO eval."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import json
from absl import logging
import numpy as np
from PIL import Image
from pycocotools import coco
from pycocotools import mask as mask_api
import six
import tensorflow as tf
from official.legacy.detection.dataloader import tf_example_decoder
from official.legacy.detection.utils import box_utils
from official.legacy.detection.utils import mask_utils
class COCOWrapper(coco.COCO):
"""COCO wrapper class.
This class wraps COCO API object, which provides the following additional
functionalities:
1. Support string type image id.
2. Support loading the groundtruth dataset using the external annotation
dictionary.
3. Support loading the prediction results using the external annotation
dictionary.
"""
def __init__(self, eval_type='box', annotation_file=None, gt_dataset=None):
"""Instantiates a COCO-style API object.
Args:
eval_type: either 'box' or 'mask'.
annotation_file: a JSON file that stores annotations of the eval dataset.
This is required if `gt_dataset` is not provided.
gt_dataset: the groundtruth eval datatset in COCO API format.
"""
if ((annotation_file and gt_dataset) or
((not annotation_file) and (not gt_dataset))):
raise ValueError('One and only one of `annotation_file` and `gt_dataset` '
'needs to be specified.')
if eval_type not in ['box', 'mask']:
raise ValueError('The `eval_type` can only be either `box` or `mask`.')
coco.COCO.__init__(self, annotation_file=annotation_file)
self._eval_type = eval_type
if gt_dataset:
self.dataset = gt_dataset
self.createIndex()
def loadRes(self, predictions):
"""Loads result file and return a result api object.
Args:
predictions: a list of dictionary each representing an annotation in COCO
format. The required fields are `image_id`, `category_id`, `score`,
`bbox`, `segmentation`.
Returns:
res: result COCO api object.
Raises:
ValueError: if the set of image id from predctions is not the subset of
the set of image id of the groundtruth dataset.
"""
res = coco.COCO()
res.dataset['images'] = copy.deepcopy(self.dataset['images'])
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
image_ids = [ann['image_id'] for ann in predictions]
if set(image_ids) != (set(image_ids) & set(self.getImgIds())):
raise ValueError('Results do not correspond to the current dataset!')
for ann in predictions:
x1, x2, y1, y2 = [ann['bbox'][0], ann['bbox'][0] + ann['bbox'][2],
ann['bbox'][1], ann['bbox'][1] + ann['bbox'][3]]
if self._eval_type == 'box':
ann['area'] = ann['bbox'][2] * ann['bbox'][3]
ann['segmentation'] = [
[x1, y1, x1, y2, x2, y2, x2, y1]]
elif self._eval_type == 'mask':
ann['area'] = mask_api.area(ann['segmentation'])
res.dataset['annotations'] = copy.deepcopy(predictions)
res.createIndex()
return res
def convert_predictions_to_coco_annotations(predictions):
"""Converts a batch of predictions to annotations in COCO format.
Args:
predictions: a dictionary of lists of numpy arrays including the following
fields. K below denotes the maximum number of instances per image.
Required fields:
- source_id: a list of numpy arrays of int or string of shape
[batch_size].
- num_detections: a list of numpy arrays of int of shape [batch_size].
- detection_boxes: a list of numpy arrays of float of shape
[batch_size, K, 4], where coordinates are in the original image
space (not the scaled image space).
- detection_classes: a list of numpy arrays of int of shape
[batch_size, K].
- detection_scores: a list of numpy arrays of float of shape
[batch_size, K].
Optional fields:
- detection_masks: a list of numpy arrays of float of shape
[batch_size, K, mask_height, mask_width].
Returns:
coco_predictions: prediction in COCO annotation format.
"""
coco_predictions = []
num_batches = len(predictions['source_id'])
batch_size = predictions['source_id'][0].shape[0]
max_num_detections = predictions['detection_classes'][0].shape[1]
use_outer_box = 'detection_outer_boxes' in predictions
for i in range(num_batches):
predictions['detection_boxes'][i] = box_utils.yxyx_to_xywh(
predictions['detection_boxes'][i])
if use_outer_box:
predictions['detection_outer_boxes'][i] = box_utils.yxyx_to_xywh(
predictions['detection_outer_boxes'][i])
mask_boxes = predictions['detection_outer_boxes']
else:
mask_boxes = predictions['detection_boxes']
for j in range(batch_size):
if 'detection_masks' in predictions:
image_masks = mask_utils.paste_instance_masks(
predictions['detection_masks'][i][j],
mask_boxes[i][j],
int(predictions['image_info'][i][j, 0, 0]),
int(predictions['image_info'][i][j, 0, 1]))
binary_masks = (image_masks > 0.0).astype(np.uint8)
encoded_masks = [
mask_api.encode(np.asfortranarray(binary_mask))
for binary_mask in list(binary_masks)]
for k in range(max_num_detections):
ann = {}
ann['image_id'] = predictions['source_id'][i][j]
ann['category_id'] = predictions['detection_classes'][i][j, k]
ann['bbox'] = predictions['detection_boxes'][i][j, k]
ann['score'] = predictions['detection_scores'][i][j, k]
if 'detection_masks' in predictions:
ann['segmentation'] = encoded_masks[k]
coco_predictions.append(ann)
for i, ann in enumerate(coco_predictions):
ann['id'] = i + 1
return coco_predictions
def convert_groundtruths_to_coco_dataset(groundtruths, label_map=None):
"""Converts groundtruths to the dataset in COCO format.
Args:
groundtruths: a dictionary of numpy arrays including the fields below.
Note that each element in the list represent the number for a single
example without batch dimension. K below denotes the actual number of
instances for each image.
Required fields:
- source_id: a list of numpy arrays of int or string of shape
[batch_size].
- height: a list of numpy arrays of int of shape [batch_size].
- width: a list of numpy arrays of int of shape [batch_size].
- num_detections: a list of numpy arrays of int of shape [batch_size].
- boxes: a list of numpy arrays of float of shape [batch_size, K, 4],
where coordinates are in the original image space (not the
normalized coordinates).
- classes: a list of numpy arrays of int of shape [batch_size, K].
Optional fields:
- is_crowds: a list of numpy arrays of int of shape [batch_size, K]. If
th field is absent, it is assumed that this instance is not crowd.
- areas: a list of numy arrays of float of shape [batch_size, K]. If the
field is absent, the area is calculated using either boxes or
masks depending on which one is available.
- masks: a list of numpy arrays of string of shape [batch_size, K],
label_map: (optional) a dictionary that defines items from the category id
to the category name. If `None`, collect the category mappping from the
`groundtruths`.
Returns:
coco_groundtruths: the groundtruth dataset in COCO format.
"""
source_ids = np.concatenate(groundtruths['source_id'], axis=0)
heights = np.concatenate(groundtruths['height'], axis=0)
widths = np.concatenate(groundtruths['width'], axis=0)
gt_images = [{'id': int(i), 'height': int(h), 'width': int(w)} for i, h, w
in zip(source_ids, heights, widths)]
gt_annotations = []
num_batches = len(groundtruths['source_id'])
batch_size = groundtruths['source_id'][0].shape[0]
for i in range(num_batches):
for j in range(batch_size):
num_instances = groundtruths['num_detections'][i][j]
for k in range(num_instances):
ann = {}
ann['image_id'] = int(groundtruths['source_id'][i][j])
if 'is_crowds' in groundtruths:
ann['iscrowd'] = int(groundtruths['is_crowds'][i][j, k])
else:
ann['iscrowd'] = 0
ann['category_id'] = int(groundtruths['classes'][i][j, k])
boxes = groundtruths['boxes'][i]
ann['bbox'] = [
float(boxes[j, k, 1]),
float(boxes[j, k, 0]),
float(boxes[j, k, 3] - boxes[j, k, 1]),
float(boxes[j, k, 2] - boxes[j, k, 0])]
if 'areas' in groundtruths:
ann['area'] = float(groundtruths['areas'][i][j, k])
else:
ann['area'] = float(
(boxes[j, k, 3] - boxes[j, k, 1]) *
(boxes[j, k, 2] - boxes[j, k, 0]))
if 'masks' in groundtruths:
mask = Image.open(six.BytesIO(groundtruths['masks'][i][j, k]))
width, height = mask.size
np_mask = (
np.array(mask.getdata()).reshape(height, width).astype(np.uint8))
np_mask[np_mask > 0] = 255
encoded_mask = mask_api.encode(np.asfortranarray(np_mask))
ann['segmentation'] = encoded_mask
if 'areas' not in groundtruths:
ann['area'] = mask_api.area(encoded_mask)
gt_annotations.append(ann)
for i, ann in enumerate(gt_annotations):
ann['id'] = i + 1
if label_map:
gt_categories = [{'id': i, 'name': label_map[i]} for i in label_map]
else:
category_ids = [gt['category_id'] for gt in gt_annotations]
gt_categories = [{'id': i} for i in set(category_ids)]
gt_dataset = {
'images': gt_images,
'categories': gt_categories,
'annotations': copy.deepcopy(gt_annotations),
}
return gt_dataset
class COCOGroundtruthGenerator(object):
"""Generates the groundtruth annotations from a single example."""
def __init__(self, file_pattern, num_examples, include_mask):
self._file_pattern = file_pattern
self._num_examples = num_examples
self._include_mask = include_mask
self._dataset_fn = tf.data.TFRecordDataset
def _parse_single_example(self, example):
"""Parses a single serialized tf.Example proto.
Args:
example: a serialized tf.Example proto string.
Returns:
A dictionary of groundtruth with the following fields:
source_id: a scalar tensor of int64 representing the image source_id.
height: a scalar tensor of int64 representing the image height.
width: a scalar tensor of int64 representing the image width.
boxes: a float tensor of shape [K, 4], representing the groundtruth
boxes in absolute coordinates with respect to the original image size.
classes: a int64 tensor of shape [K], representing the class labels of
each instances.
is_crowds: a bool tensor of shape [K], indicating whether the instance
is crowd.
areas: a float tensor of shape [K], indicating the area of each
instance.
masks: a string tensor of shape [K], containing the bytes of the png
mask of each instance.
"""
decoder = tf_example_decoder.TfExampleDecoder(
include_mask=self._include_mask)
decoded_tensors = decoder.decode(example)
image = decoded_tensors['image']
image_size = tf.shape(image)[0:2]
boxes = box_utils.denormalize_boxes(
decoded_tensors['groundtruth_boxes'], image_size)
groundtruths = {
'source_id': tf.string_to_number(
decoded_tensors['source_id'], out_type=tf.int64),
'height': decoded_tensors['height'],
'width': decoded_tensors['width'],
'num_detections': tf.shape(decoded_tensors['groundtruth_classes'])[0],
'boxes': boxes,
'classes': decoded_tensors['groundtruth_classes'],
'is_crowds': decoded_tensors['groundtruth_is_crowd'],
'areas': decoded_tensors['groundtruth_area'],
}
if self._include_mask:
groundtruths.update({
'masks': decoded_tensors['groundtruth_instance_masks_png'],
})
return groundtruths
def _build_pipeline(self):
"""Builds data pipeline to generate groundtruth annotations."""
dataset = tf.data.Dataset.list_files(self._file_pattern, shuffle=False)
dataset = dataset.apply(
tf.data.experimental.parallel_interleave(
lambda filename: self._dataset_fn(filename).prefetch(1),
cycle_length=32,
sloppy=False))
dataset = dataset.map(self._parse_single_example, num_parallel_calls=64)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(1, drop_remainder=False)
return dataset
def __call__(self):
with tf.Graph().as_default():
dataset = self._build_pipeline()
groundtruth = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for _ in range(self._num_examples):
groundtruth_result = sess.run(groundtruth)
yield groundtruth_result
def scan_and_generator_annotation_file(file_pattern,
num_samples,
include_mask,
annotation_file):
"""Scans and generate the COCO-style annotation JSON file given a dataset."""
groundtruth_generator = COCOGroundtruthGenerator(
file_pattern, num_samples, include_mask)
generate_annotation_file(groundtruth_generator, annotation_file)
def generate_annotation_file(groundtruth_generator,
annotation_file):
"""Generates COCO-style annotation JSON file given a groundtruth generator."""
groundtruths = {}
logging.info('Loading groundtruth annotations from dataset to memory...')
for groundtruth in groundtruth_generator():
for k, v in six.iteritems(groundtruth):
if k not in groundtruths:
groundtruths[k] = [v]
else:
groundtruths[k].append(v)
gt_dataset = convert_groundtruths_to_coco_dataset(groundtruths)
logging.info('Saving groundtruth annotations to the JSON file...')
with tf.io.gfile.GFile(annotation_file, 'w') as f:
f.write(json.dumps(gt_dataset))
logging.info('Done saving the JSON file...')
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluator factory."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from official.legacy.detection.evaluation import coco_evaluator
def evaluator_generator(params):
"""Generator function for various evaluators."""
if params.type == 'box':
evaluator = coco_evaluator.COCOEvaluator(
annotation_file=params.val_json_file, include_mask=False)
elif params.type == 'box_and_mask':
evaluator = coco_evaluator.COCOEvaluator(
annotation_file=params.val_json_file, include_mask=True)
elif params.type == 'oln_xclass_box':
evaluator = coco_evaluator.OlnXclassEvaluator(
annotation_file=params.val_json_file, include_mask=False,
use_category=False, seen_class=params.seen_class,)
elif params.type == 'oln_xclass_box_and_mask':
evaluator = coco_evaluator.OlnXclassEvaluator(
annotation_file=params.val_json_file, include_mask=True,
use_category=False, seen_class=params.seen_class,)
elif params.type == 'oln_xdata_box':
evaluator = coco_evaluator.OlnXdataEvaluator(
annotation_file=params.val_json_file, include_mask=False,
use_category=False, seen_class='all',)
elif params.type == 'shapemask_box_and_mask':
evaluator = coco_evaluator.ShapeMaskCOCOEvaluator(
mask_eval_class=params.mask_eval_class,
annotation_file=params.val_json_file, include_mask=True)
else:
raise ValueError('Evaluator %s is not supported.' % params.type)
return coco_evaluator.MetricWrapper(evaluator)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An executor class for running model on TensorFlow 2.0."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
import tensorflow as tf
from official.legacy.detection.executor import distributed_executor as executor
from official.vision.utils.object_detection import visualization_utils
class DetectionDistributedExecutor(executor.DistributedExecutor):
"""Detection specific customer training loop executor.
Subclasses the DistributedExecutor and adds support for numpy based metrics.
"""
def __init__(self,
predict_post_process_fn=None,
trainable_variables_filter=None,
**kwargs):
super(DetectionDistributedExecutor, self).__init__(**kwargs)
if predict_post_process_fn:
assert callable(predict_post_process_fn)
if trainable_variables_filter:
assert callable(trainable_variables_filter)
self._predict_post_process_fn = predict_post_process_fn
self._trainable_variables_filter = trainable_variables_filter
self.eval_steps = tf.Variable(
0,
trainable=False,
dtype=tf.int32,
synchronization=tf.VariableSynchronization.ON_READ,
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,
shape=[])
def _create_replicated_step(self,
strategy,
model,
loss_fn,
optimizer,
metric=None):
trainable_variables = model.trainable_variables
if self._trainable_variables_filter:
trainable_variables = self._trainable_variables_filter(
trainable_variables)
logging.info('Filter trainable variables from %d to %d',
len(model.trainable_variables), len(trainable_variables))
update_state_fn = lambda labels, outputs: None
if isinstance(metric, tf.keras.metrics.Metric):
update_state_fn = metric.update_state
else:
logging.error('Detection: train metric is not an instance of '
'tf.keras.metrics.Metric.')
def _replicated_step(inputs):
"""Replicated training step."""
inputs, labels = inputs
with tf.GradientTape() as tape:
outputs = model(inputs, training=True)
all_losses = loss_fn(labels, outputs)
losses = {}
for k, v in all_losses.items():
losses[k] = tf.reduce_mean(v)
per_replica_loss = losses['total_loss'] / strategy.num_replicas_in_sync
update_state_fn(labels, outputs)
grads = tape.gradient(per_replica_loss, trainable_variables)
clipped_grads, _ = tf.clip_by_global_norm(grads, clip_norm=1.0)
optimizer.apply_gradients(zip(clipped_grads, trainable_variables))
return losses
return _replicated_step
def _create_test_step(self, strategy, model, metric):
"""Creates a distributed test step."""
@tf.function
def test_step(iterator, eval_steps):
"""Calculates evaluation metrics on distributed devices."""
def _test_step_fn(inputs, eval_steps):
"""Replicated accuracy calculation."""
inputs, labels = inputs
model_outputs = model(inputs, training=False)
if self._predict_post_process_fn:
labels, prediction_outputs = self._predict_post_process_fn(
labels, model_outputs)
num_remaining_visualizations = (
self._params.eval.num_images_to_visualize - eval_steps)
# If there are remaining number of visualizations that needs to be
# done, add next batch outputs for visualization.
#
# TODO(hongjunchoi): Once dynamic slicing is supported on TPU, only
# write correct slice of outputs to summary file.
if num_remaining_visualizations > 0:
visualization_utils.visualize_images_with_bounding_boxes(
inputs, prediction_outputs['detection_boxes'],
self.global_train_step, self.eval_summary_writer)
return labels, prediction_outputs
labels, outputs = strategy.run(
_test_step_fn, args=(
next(iterator),
eval_steps,
))
outputs = tf.nest.map_structure(strategy.experimental_local_results,
outputs)
labels = tf.nest.map_structure(strategy.experimental_local_results,
labels)
eval_steps.assign_add(self._params.eval.batch_size)
return labels, outputs
return test_step
def _run_evaluation(self, test_step, current_training_step, metric,
test_iterator):
"""Runs validation steps and aggregate metrics."""
self.eval_steps.assign(0)
if not test_iterator or not metric:
logging.warning(
'Both test_iterator (%s) and metrics (%s) must not be None.',
test_iterator, metric)
return None
logging.info('Running evaluation after step: %s.', current_training_step)
while True:
try:
labels, outputs = test_step(test_iterator, self.eval_steps)
if metric:
metric.update_state(labels, outputs)
except (StopIteration, tf.errors.OutOfRangeError):
break
metric_result = metric.result()
if isinstance(metric, tf.keras.metrics.Metric):
metric_result = tf.nest.map_structure(lambda x: x.numpy().astype(float),
metric_result)
logging.info('Step: [%d] Validation metric = %s', current_training_step,
metric_result)
return metric_result
This diff is collapsed.
This diff is collapsed.
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Identity Fn that forwards the input features."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
class Identity(object):
"""Identity function that forwards the input features."""
def __call__(self, features, is_training=False):
"""Only forwards the input features."""
return features
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Factory to build detection model."""
from official.legacy.detection.modeling import maskrcnn_model
from official.legacy.detection.modeling import olnmask_model
from official.legacy.detection.modeling import retinanet_model
from official.legacy.detection.modeling import shapemask_model
def model_generator(params):
"""Model function generator."""
if params.type == 'retinanet':
model_fn = retinanet_model.RetinanetModel(params)
elif params.type == 'mask_rcnn':
model_fn = maskrcnn_model.MaskrcnnModel(params)
elif params.type == 'olnmask':
model_fn = olnmask_model.OlnMaskModel(params)
elif params.type == 'shapemask':
model_fn = shapemask_model.ShapeMaskModel(params)
else:
raise ValueError('Model %s is not supported.'% params.type)
return model_fn
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment