Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
dff0f0c1
Commit
dff0f0c1
authored
Aug 08, 2017
by
Alexander Gorban
Browse files
Merge branch 'master' of github.com:tensorflow/models
parents
da341f70
36203f09
Changes
187
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
944 additions
and
596 deletions
+944
-596
lfads/synth_data/synthetic_data_utils.py
lfads/synth_data/synthetic_data_utils.py
+28
-2
lfads/utils.py
lfads/utils.py
+15
-8
object_detection/README.md
object_detection/README.md
+11
-0
object_detection/core/BUILD
object_detection/core/BUILD
+1
-0
object_detection/core/box_predictor.py
object_detection/core/box_predictor.py
+18
-17
object_detection/core/model.py
object_detection/core/model.py
+7
-8
object_detection/core/post_processing.py
object_detection/core/post_processing.py
+71
-57
object_detection/core/post_processing_test.py
object_detection/core/post_processing_test.py
+180
-68
object_detection/core/preprocessor.py
object_detection/core/preprocessor.py
+86
-52
object_detection/core/preprocessor_test.py
object_detection/core/preprocessor_test.py
+31
-45
object_detection/data/pascal_label_map.pbtxt
object_detection/data/pascal_label_map.pbtxt
+0
-5
object_detection/data/pet_label_map.pbtxt
object_detection/data/pet_label_map.pbtxt
+0
-5
object_detection/export_inference_graph.py
object_detection/export_inference_graph.py
+38
-33
object_detection/exporter.py
object_detection/exporter.py
+183
-146
object_detection/exporter_test.py
object_detection/exporter_test.py
+241
-128
object_detection/g3doc/configuring_jobs.md
object_detection/g3doc/configuring_jobs.md
+3
-3
object_detection/g3doc/img/example_cat.jpg
object_detection/g3doc/img/example_cat.jpg
+0
-0
object_detection/g3doc/installation.md
object_detection/g3doc/installation.md
+1
-1
object_detection/g3doc/preparing_inputs.md
object_detection/g3doc/preparing_inputs.md
+28
-16
object_detection/g3doc/running_locally.md
object_detection/g3doc/running_locally.md
+2
-2
No files found.
lfads/synth_data/synthetic_data_utils.py
View file @
dff0f0c1
...
@@ -132,11 +132,10 @@ def spikify_data(data_e, rng, dt=1.0, max_firing_rate=100):
...
@@ -132,11 +132,10 @@ def spikify_data(data_e, rng, dt=1.0, max_firing_rate=100):
dt: how often the data are sampled
dt: how often the data are sampled
max_firing_rate: the firing rate that is associated with a value of 1.0
max_firing_rate: the firing rate that is associated with a value of 1.0
Returns:
Returns:
spikified_
data_
e: a list of length b of the data represented as spikes,
spikified_e: a list of length b of the data represented as spikes,
sampled from the underlying poisson process.
sampled from the underlying poisson process.
"""
"""
spikifies_data_e
=
[]
E
=
len
(
data_e
)
E
=
len
(
data_e
)
spikes_e
=
[]
spikes_e
=
[]
for
e
in
range
(
E
):
for
e
in
range
(
E
):
...
@@ -152,6 +151,31 @@ def spikify_data(data_e, rng, dt=1.0, max_firing_rate=100):
...
@@ -152,6 +151,31 @@ def spikify_data(data_e, rng, dt=1.0, max_firing_rate=100):
return
spikes_e
return
spikes_e
def
gaussify_data
(
data_e
,
rng
,
dt
=
1.0
,
max_firing_rate
=
100
):
""" Apply gaussian noise to a continuous dataset whose values are between
0.0 and 1.0
Args:
data_e: nexamples length list of NxT trials
dt: how often the data are sampled
max_firing_rate: the firing rate that is associated with a value of 1.0
Returns:
gauss_e: a list of length b of the data with noise.
"""
E
=
len
(
data_e
)
mfr
=
max_firing_rate
gauss_e
=
[]
for
e
in
range
(
E
):
data
=
data_e
[
e
]
N
,
T
=
data
.
shape
noisy_data
=
data
*
mfr
+
np
.
random
.
randn
(
N
,
T
)
*
(
5.0
*
mfr
)
*
np
.
sqrt
(
dt
)
gauss_e
.
append
(
noisy_data
)
return
gauss_e
def
get_train_n_valid_inds
(
num_trials
,
train_fraction
,
nspikifications
):
def
get_train_n_valid_inds
(
num_trials
,
train_fraction
,
nspikifications
):
"""Split the numbers between 0 and num_trials-1 into two portions for
"""Split the numbers between 0 and num_trials-1 into two portions for
training and validation, based on the train fraction.
training and validation, based on the train fraction.
...
@@ -295,6 +319,8 @@ def add_alignment_projections(datasets, npcs, ntime=None, nsamples=None):
...
@@ -295,6 +319,8 @@ def add_alignment_projections(datasets, npcs, ntime=None, nsamples=None):
W_chxp
,
_
,
_
,
_
=
\
W_chxp
,
_
,
_
,
_
=
\
np
.
linalg
.
lstsq
(
all_data_zm_chxtc
.
T
,
all_data_pca_pxtc
.
T
)
np
.
linalg
.
lstsq
(
all_data_zm_chxtc
.
T
,
all_data_pca_pxtc
.
T
)
dataset
[
'alignment_matrix_cxf'
]
=
W_chxp
dataset
[
'alignment_matrix_cxf'
]
=
W_chxp
alignment_bias_cx1
=
all_data_mean_nx1
[
cidx_s
:
cidx_f
]
dataset
[
'alignment_bias_c'
]
=
np
.
squeeze
(
alignment_bias_cx1
,
axis
=
1
)
do_debug_plot
=
False
do_debug_plot
=
False
if
do_debug_plot
:
if
do_debug_plot
:
...
...
lfads/utils.py
View file @
dff0f0c1
...
@@ -82,9 +82,9 @@ def linear(x, out_size, do_bias=True, alpha=1.0, identity_if_possible=False,
...
@@ -82,9 +82,9 @@ def linear(x, out_size, do_bias=True, alpha=1.0, identity_if_possible=False,
return
tf
.
matmul
(
x
,
W
)
return
tf
.
matmul
(
x
,
W
)
def
init_linear
(
in_size
,
out_size
,
do_bias
=
True
,
mat_init_value
=
None
,
alpha
=
1.0
,
def
init_linear
(
in_size
,
out_size
,
do_bias
=
True
,
mat_init_value
=
None
,
identity_if_possible
=
False
,
normalized
=
False
,
bias_init_value
=
None
,
alpha
=
1.0
,
identity_if_possible
=
False
,
name
=
None
,
collections
=
None
):
normalized
=
False
,
name
=
None
,
collections
=
None
):
"""Linear (affine) transformation, y = x W + b, for a variety of
"""Linear (affine) transformation, y = x W + b, for a variety of
configurations.
configurations.
...
@@ -110,6 +110,9 @@ def init_linear(in_size, out_size, do_bias=True, mat_init_value=None, alpha=1.0,
...
@@ -110,6 +110,9 @@ def init_linear(in_size, out_size, do_bias=True, mat_init_value=None, alpha=1.0,
if
mat_init_value
is
not
None
and
mat_init_value
.
shape
!=
(
in_size
,
out_size
):
if
mat_init_value
is
not
None
and
mat_init_value
.
shape
!=
(
in_size
,
out_size
):
raise
ValueError
(
raise
ValueError
(
'Provided mat_init_value must have shape [%d, %d].'
%
(
in_size
,
out_size
))
'Provided mat_init_value must have shape [%d, %d].'
%
(
in_size
,
out_size
))
if
bias_init_value
is
not
None
and
bias_init_value
.
shape
!=
(
1
,
out_size
):
raise
ValueError
(
'Provided bias_init_value must have shape [1,%d].'
%
(
out_size
,))
if
mat_init_value
is
None
:
if
mat_init_value
is
None
:
stddev
=
alpha
/
np
.
sqrt
(
float
(
in_size
))
stddev
=
alpha
/
np
.
sqrt
(
float
(
in_size
))
...
@@ -143,16 +146,20 @@ def init_linear(in_size, out_size, do_bias=True, mat_init_value=None, alpha=1.0,
...
@@ -143,16 +146,20 @@ def init_linear(in_size, out_size, do_bias=True, mat_init_value=None, alpha=1.0,
w
=
tf
.
get_variable
(
wname
,
[
in_size
,
out_size
],
initializer
=
mat_init
,
w
=
tf
.
get_variable
(
wname
,
[
in_size
,
out_size
],
initializer
=
mat_init
,
collections
=
w_collections
)
collections
=
w_collections
)
b
=
None
if
do_bias
:
if
do_bias
:
b_collections
=
[
tf
.
GraphKeys
.
GLOBAL_VARIABLES
]
b_collections
=
[
tf
.
GraphKeys
.
GLOBAL_VARIABLES
]
if
collections
:
if
collections
:
b_collections
+=
collections
b_collections
+=
collections
bname
=
(
name
+
"/b"
)
if
name
else
"/b"
bname
=
(
name
+
"/b"
)
if
name
else
"/b"
b
=
tf
.
get_variable
(
bname
,
[
1
,
out_size
],
if
bias_init_value
is
None
:
initializer
=
tf
.
zeros_initializer
(),
b
=
tf
.
get_variable
(
bname
,
[
1
,
out_size
],
collections
=
b_collections
)
initializer
=
tf
.
zeros_initializer
(),
else
:
collections
=
b_collections
)
b
=
None
else
:
b
=
tf
.
Variable
(
bias_init_value
,
name
=
bname
,
collections
=
b_collections
)
return
(
w
,
b
)
return
(
w
,
b
)
...
...
object_detection/README.md
View file @
dff0f0c1
...
@@ -54,6 +54,17 @@ Extras:
...
@@ -54,6 +54,17 @@ Extras:
Exporting a trained model for inference
</a><br>
Exporting a trained model for inference
</a><br>
*
<a
href=
'g3doc/defining_your_own_model.md'
>
*
<a
href=
'g3doc/defining_your_own_model.md'
>
Defining your own model architecture
</a><br>
Defining your own model architecture
</a><br>
*
<a
href=
'g3doc/using_your_own_dataset.md'
>
Bringing in your own dataset
</a><br>
## Getting Help
Please report bugs to the tensorflow/models/ Github
[
issue tracker
](
https://github.com/tensorflow/models/issues
)
, prefixing the
issue name with "object_detection". To get help with issues you may encounter
using the Tensorflow Object Detection API, create a new question on
[
StackOverflow
](
https://stackoverflow.com/
)
with the tags "tensorflow" and
"object-detection".
## Release information
## Release information
...
...
object_detection/core/BUILD
View file @
dff0f0c1
...
@@ -270,6 +270,7 @@ py_library(
...
@@ -270,6 +270,7 @@ py_library(
deps
=
[
deps
=
[
"//tensorflow"
,
"//tensorflow"
,
"//tensorflow_models/object_detection/utils:ops"
,
"//tensorflow_models/object_detection/utils:ops"
,
"//tensorflow_models/object_detection/utils:shape_utils"
,
"//tensorflow_models/object_detection/utils:static_shape"
,
"//tensorflow_models/object_detection/utils:static_shape"
,
],
],
)
)
...
...
object_detection/core/box_predictor.py
View file @
dff0f0c1
...
@@ -29,6 +29,7 @@ few box predictor architectures are shared across many models.
...
@@ -29,6 +29,7 @@ few box predictor architectures are shared across many models.
from
abc
import
abstractmethod
from
abc
import
abstractmethod
import
tensorflow
as
tf
import
tensorflow
as
tf
from
object_detection.utils
import
ops
from
object_detection.utils
import
ops
from
object_detection.utils
import
shape_utils
from
object_detection.utils
import
static_shape
from
object_detection.utils
import
static_shape
slim
=
tf
.
contrib
.
slim
slim
=
tf
.
contrib
.
slim
...
@@ -316,6 +317,8 @@ class MaskRCNNBoxPredictor(BoxPredictor):
...
@@ -316,6 +317,8 @@ class MaskRCNNBoxPredictor(BoxPredictor):
self
.
_predict_instance_masks
=
predict_instance_masks
self
.
_predict_instance_masks
=
predict_instance_masks
self
.
_mask_prediction_conv_depth
=
mask_prediction_conv_depth
self
.
_mask_prediction_conv_depth
=
mask_prediction_conv_depth
self
.
_predict_keypoints
=
predict_keypoints
self
.
_predict_keypoints
=
predict_keypoints
if
self
.
_predict_instance_masks
:
raise
ValueError
(
'Mask prediction is unimplemented.'
)
if
self
.
_predict_keypoints
:
if
self
.
_predict_keypoints
:
raise
ValueError
(
'Keypoint prediction is unimplemented.'
)
raise
ValueError
(
'Keypoint prediction is unimplemented.'
)
if
((
self
.
_predict_instance_masks
or
self
.
_predict_keypoints
)
and
if
((
self
.
_predict_instance_masks
or
self
.
_predict_keypoints
)
and
...
@@ -524,23 +527,21 @@ class ConvolutionalBoxPredictor(BoxPredictor):
...
@@ -524,23 +527,21 @@ class ConvolutionalBoxPredictor(BoxPredictor):
class_predictions_with_background
=
tf
.
sigmoid
(
class_predictions_with_background
=
tf
.
sigmoid
(
class_predictions_with_background
)
class_predictions_with_background
)
batch_size
=
static_shape
.
get_batch_size
(
image_features
.
get_shape
())
combined_feature_map_shape
=
shape_utils
.
combined_static_and_dynamic_shape
(
if
batch_size
is
None
:
image_features
)
features_height
=
static_shape
.
get_height
(
image_features
.
get_shape
())
box_encodings
=
tf
.
reshape
(
features_width
=
static_shape
.
get_width
(
image_features
.
get_shape
())
box_encodings
,
tf
.
stack
([
combined_feature_map_shape
[
0
],
flattened_predictions_size
=
(
features_height
*
features_width
*
combined_feature_map_shape
[
1
]
*
num_predictions_per_location
)
combined_feature_map_shape
[
2
]
*
box_encodings
=
tf
.
reshape
(
num_predictions_per_location
,
box_encodings
,
1
,
self
.
_box_code_size
]))
[
-
1
,
flattened_predictions_size
,
1
,
self
.
_box_code_size
])
class_predictions_with_background
=
tf
.
reshape
(
class_predictions_with_background
=
tf
.
reshape
(
class_predictions_with_background
,
class_predictions_with_background
,
tf
.
stack
([
combined_feature_map_shape
[
0
],
[
-
1
,
flattened_predictions_size
,
num_class_slots
])
combined_feature_map_shape
[
1
]
*
else
:
combined_feature_map_shape
[
2
]
*
box_encodings
=
tf
.
reshape
(
num_predictions_per_location
,
box_encodings
,
[
batch_size
,
-
1
,
1
,
self
.
_box_code_size
])
num_class_slots
]))
class_predictions_with_background
=
tf
.
reshape
(
class_predictions_with_background
,
[
batch_size
,
-
1
,
num_class_slots
])
return
{
BOX_ENCODINGS
:
box_encodings
,
return
{
BOX_ENCODINGS
:
box_encodings
,
CLASS_PREDICTIONS_WITH_BACKGROUND
:
CLASS_PREDICTIONS_WITH_BACKGROUND
:
class_predictions_with_background
}
class_predictions_with_background
}
object_detection/core/model.py
View file @
dff0f0c1
...
@@ -228,25 +228,24 @@ class DetectionModel(object):
...
@@ -228,25 +228,24 @@ class DetectionModel(object):
fields
.
BoxListFields
.
keypoints
]
=
groundtruth_keypoints_list
fields
.
BoxListFields
.
keypoints
]
=
groundtruth_keypoints_list
@
abstractmethod
@
abstractmethod
def
restore_
fn
(
self
,
checkpoint_path
,
from_detection_checkpoint
=
True
):
def
restore_
map
(
self
,
from_detection_checkpoint
=
True
):
"""Return
callable for loading a foreign checkpoint into tensorflow graph
.
"""Return
s a map of variables to load from a foreign checkpoint
.
Loads variables from a different tensorflow graph (typically feature
Returns a map of variable names to load from a checkpoint to variables in
extractor variables)
. This enables the model to initialize based on weights
the model graph
. This enables the model to initialize based on weights
from
from
another task. For example, the feature extractor variables from a
another task. For example, the feature extractor variables from a
classification model can be used to bootstrap training of an object
classification model can be used to bootstrap training of an object
detector. When loading from an object detection model, the checkpoint model
detector. When loading from an object detection model, the checkpoint model
should have the same parameters as this detection model with exception of
should have the same parameters as this detection model with exception of
the num_classes parameter.
the num_classes parameter.
Args:
Args:
checkpoint_path: path to checkpoint to restore.
from_detection_checkpoint: whether to restore from a full detection
from_detection_checkpoint: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
classification checkpoint for initialization prior to training.
Returns:
Returns:
a callable which takes a tf.Session as input and loads a checkpoint whe
n
A dict mapping variable names (to load from a checkpoint) to variables i
n
run
.
the model graph
.
"""
"""
pass
pass
object_detection/core/post_processing.py
View file @
dff0f0c1
...
@@ -174,7 +174,8 @@ def batch_multiclass_non_max_suppression(boxes,
...
@@ -174,7 +174,8 @@ def batch_multiclass_non_max_suppression(boxes,
change_coordinate_frame
=
False
,
change_coordinate_frame
=
False
,
num_valid_boxes
=
None
,
num_valid_boxes
=
None
,
masks
=
None
,
masks
=
None
,
scope
=
None
):
scope
=
None
,
parallel_iterations
=
32
):
"""Multi-class version of non maximum suppression that operates on a batch.
"""Multi-class version of non maximum suppression that operates on a batch.
This op is similar to `multiclass_non_max_suppression` but operates on a batch
This op is similar to `multiclass_non_max_suppression` but operates on a batch
...
@@ -208,26 +209,28 @@ def batch_multiclass_non_max_suppression(boxes,
...
@@ -208,26 +209,28 @@ def batch_multiclass_non_max_suppression(boxes,
float32 tensor containing box masks. `q` can be either number of classes
float32 tensor containing box masks. `q` can be either number of classes
or 1 depending on whether a separate mask is predicted per class.
or 1 depending on whether a separate mask is predicted per class.
scope: tf scope name.
scope: tf scope name.
parallel_iterations: (optional) number of batch items to process in
parallel.
Returns:
Returns:
A dictionary containing the following entries:
'nmsed_boxes': A [batch_size, max_detections, 4] float32 tensor
'detection_boxes': A [batch_size, max_detections, 4] float32 tensor
containing the non-max suppressed boxes.
containing the non-max suppressed boxes.
'
detection
_scores': A [bath_size, max_detections] float32 tensor containing
'
nmsed
_scores': A [bat
c
h_size, max_detections] float32 tensor containing
the scores for the boxes.
the scores for the boxes.
'
detection
_classes': A [batch_size, max_detections] float32 tensor
'
nmsed
_classes': A [batch_size, max_detections] float32 tensor
containing the class for boxes.
containing the class for boxes.
'num_detections': A [batchsize] float32 tensor indicating the number of
'nmsed_masks': (optional) a
[batch_size, max_detections, mask_height, mask_width] float32 tensor
containing masks for each selected box. This is set to None if input
`masks` is None.
'num_detections': A [batch_size] int32 tensor indicating the number of
valid detections per batch item. Only the top num_detections[i] entries in
valid detections per batch item. Only the top num_detections[i] entries in
nms_boxes[i], nms_scores[i] and nms_class[i] are valid. the rest of the
nms_boxes[i], nms_scores[i] and nms_class[i] are valid. the rest of the
entries are zero paddings.
entries are zero paddings.
'detection_masks': (optional) a
[batch_size, max_detections, mask_height, mask_width] float32 tensor
containing masks for each selected box.
Raises:
Raises:
ValueError: if
iou_thresh is not in [0, 1] or if input boxlist does not have
ValueError: if
`q` in boxes.shape is not 1 or not equal to number of
a valid scores field
.
classes as inferred from scores.shape
.
"""
"""
q
=
boxes
.
shape
[
2
].
value
q
=
boxes
.
shape
[
2
].
value
num_classes
=
scores
.
shape
[
2
].
value
num_classes
=
scores
.
shape
[
2
].
value
...
@@ -235,36 +238,45 @@ def batch_multiclass_non_max_suppression(boxes,
...
@@ -235,36 +238,45 @@ def batch_multiclass_non_max_suppression(boxes,
raise
ValueError
(
'third dimension of boxes must be either 1 or equal '
raise
ValueError
(
'third dimension of boxes must be either 1 or equal '
'to the third dimension of scores'
)
'to the third dimension of scores'
)
original_masks
=
masks
with
tf
.
name_scope
(
scope
,
'BatchMultiClassNonMaxSuppression'
):
with
tf
.
name_scope
(
scope
,
'BatchMultiClassNonMaxSuppression'
):
per_image_boxes_list
=
tf
.
unstack
(
boxes
)
boxes_shape
=
boxes
.
shape
per_image_scores_list
=
tf
.
unstack
(
scores
)
batch_size
=
boxes_shape
[
0
].
value
num_valid_boxes_list
=
len
(
per_image_boxes_list
)
*
[
None
]
num_anchors
=
boxes_shape
[
1
].
value
per_image_masks_list
=
len
(
per_image_boxes_list
)
*
[
None
]
if
num_valid_boxes
is
not
None
:
if
batch_size
is
None
:
num_valid_boxes_list
=
tf
.
unstack
(
num_valid_boxes
)
batch_size
=
tf
.
shape
(
boxes
)[
0
]
if
masks
is
not
None
:
if
num_anchors
is
None
:
per_image_masks_list
=
tf
.
unstack
(
masks
)
num_anchors
=
tf
.
shape
(
boxes
)[
1
]
# If num valid boxes aren't provided, create one and mark all boxes as
# valid.
if
num_valid_boxes
is
None
:
num_valid_boxes
=
tf
.
ones
([
batch_size
],
dtype
=
tf
.
int32
)
*
num_anchors
detection_boxes_list
=
[]
# If masks aren't provided, create dummy masks so we can only have one copy
detection_scores_list
=
[]
# of single_image_nms_fn and discard the dummy masks after map_fn.
detection_classes_list
=
[]
if
masks
is
None
:
num_detections_list
=
[]
masks_shape
=
tf
.
stack
([
batch_size
,
num_anchors
,
1
,
0
,
0
])
detection_masks_list
=
[]
masks
=
tf
.
zeros
(
masks_shape
)
for
(
per_image_boxes
,
per_image_scores
,
per_image_masks
,
num_valid_boxes
)
in
zip
(
per_image_boxes_list
,
per_image_scores_list
,
def
single_image_nms_fn
(
args
):
per_image_masks_list
,
num_valid_boxes_list
):
"""Runs NMS on a single image and returns padded output."""
if
num_valid_boxes
is
not
None
:
(
per_image_boxes
,
per_image_scores
,
per_image_masks
,
per_image_boxes
=
tf
.
reshape
(
per_image_num_valid_boxes
)
=
args
tf
.
slice
(
per_image_boxes
,
3
*
[
0
],
per_image_boxes
=
tf
.
reshape
(
tf
.
stack
([
num_valid_boxes
,
-
1
,
-
1
])),
[
-
1
,
q
,
4
])
tf
.
slice
(
per_image_boxes
,
3
*
[
0
],
per_image_scores
=
tf
.
reshape
(
tf
.
stack
([
per_image_num_valid_boxes
,
-
1
,
-
1
])),
[
-
1
,
q
,
4
])
tf
.
slice
(
per_image_scores
,
[
0
,
0
],
per_image_scores
=
tf
.
reshape
(
tf
.
stack
([
num_valid_boxes
,
-
1
])),
[
-
1
,
num_classes
])
tf
.
slice
(
per_image_scores
,
[
0
,
0
],
if
masks
is
not
None
:
tf
.
stack
([
per_image_num_valid_boxes
,
-
1
])),
per_image_masks
=
tf
.
reshape
(
[
-
1
,
num_classes
])
tf
.
slice
(
per_image_masks
,
4
*
[
0
],
tf
.
stack
([
num_valid_boxes
,
-
1
,
-
1
,
-
1
])),
per_image_masks
=
tf
.
reshape
(
[
-
1
,
q
,
masks
.
shape
[
3
].
value
,
masks
.
shape
[
4
].
value
])
tf
.
slice
(
per_image_masks
,
4
*
[
0
],
tf
.
stack
([
per_image_num_valid_boxes
,
-
1
,
-
1
,
-
1
])),
[
-
1
,
q
,
per_image_masks
.
shape
[
2
].
value
,
per_image_masks
.
shape
[
3
].
value
])
nmsed_boxlist
=
multiclass_non_max_suppression
(
nmsed_boxlist
=
multiclass_non_max_suppression
(
per_image_boxes
,
per_image_boxes
,
per_image_scores
,
per_image_scores
,
...
@@ -275,24 +287,26 @@ def batch_multiclass_non_max_suppression(boxes,
...
@@ -275,24 +287,26 @@ def batch_multiclass_non_max_suppression(boxes,
masks
=
per_image_masks
,
masks
=
per_image_masks
,
clip_window
=
clip_window
,
clip_window
=
clip_window
,
change_coordinate_frame
=
change_coordinate_frame
)
change_coordinate_frame
=
change_coordinate_frame
)
num_detections_list
.
append
(
tf
.
to_float
(
nmsed_boxlist
.
num_boxes
()))
padded_boxlist
=
box_list_ops
.
pad_or_clip_box_list
(
nmsed_boxlist
,
padded_boxlist
=
box_list_ops
.
pad_or_clip_box_list
(
nmsed_boxlist
,
max_total_size
)
max_total_size
)
detection_boxes_list
.
append
(
padded_boxlist
.
get
())
num_detections
=
nmsed_boxlist
.
num_boxes
()
detection_scores_list
.
append
(
nmsed_boxes
=
padded_boxlist
.
get
()
padded_boxlist
.
get_field
(
fields
.
BoxListFields
.
scores
))
nmsed_scores
=
padded_boxlist
.
get_field
(
fields
.
BoxListFields
.
scores
)
detection_classes_list
.
append
(
nmsed_classes
=
padded_boxlist
.
get_field
(
fields
.
BoxListFields
.
classes
)
padded_boxlist
.
get_field
(
fields
.
BoxListFields
.
classes
))
nmsed_masks
=
padded_boxlist
.
get_field
(
fields
.
BoxListFields
.
masks
)
if
masks
is
not
None
:
return
[
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
nmsed_masks
,
detection_masks_list
.
append
(
num_detections
]
padded_boxlist
.
get_field
(
fields
.
BoxListFields
.
masks
))
nms_dict
=
{
(
batch_nmsed_boxes
,
batch_nmsed_scores
,
'detection_boxes'
:
tf
.
stack
(
detection_boxes_list
),
batch_nmsed_classes
,
batch_nmsed_masks
,
'detection_scores'
:
tf
.
stack
(
detection_scores_list
),
batch_num_detections
)
=
tf
.
map_fn
(
'detection_classes'
:
tf
.
stack
(
detection_classes_list
),
single_image_nms_fn
,
'num_detections'
:
tf
.
stack
(
num_detections_list
)
elems
=
[
boxes
,
scores
,
masks
,
num_valid_boxes
],
}
dtype
=
[
tf
.
float32
,
tf
.
float32
,
tf
.
float32
,
tf
.
float32
,
tf
.
int32
],
if
masks
is
not
None
:
parallel_iterations
=
parallel_iterations
)
nms_dict
[
'detection_masks'
]
=
tf
.
stack
(
detection_masks_list
)
return
nms_dict
if
original_masks
is
None
:
batch_nmsed_masks
=
None
return
(
batch_nmsed_boxes
,
batch_nmsed_scores
,
batch_nmsed_classes
,
batch_nmsed_masks
,
batch_num_detections
)
object_detection/core/post_processing_test.py
View file @
dff0f0c1
...
@@ -496,15 +496,21 @@ class MulticlassNonMaxSuppressionTest(tf.test.TestCase):
...
@@ -496,15 +496,21 @@ class MulticlassNonMaxSuppressionTest(tf.test.TestCase):
exp_nms_scores
=
[[.
95
,
.
9
,
.
85
,
.
3
]]
exp_nms_scores
=
[[.
95
,
.
9
,
.
85
,
.
3
]]
exp_nms_classes
=
[[
0
,
0
,
1
,
0
]]
exp_nms_classes
=
[[
0
,
0
,
1
,
0
]]
nms_dict
=
post_processing
.
batch_multiclass_non_max_suppression
(
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
nmsed_masks
,
boxes
,
scores
,
score_thresh
,
iou_thresh
,
num_detections
)
=
post_processing
.
batch_multiclass_non_max_suppression
(
max_size_per_class
=
max_output_size
,
max_total_size
=
max_output_size
)
boxes
,
scores
,
score_thresh
,
iou_thresh
,
max_size_per_class
=
max_output_size
,
max_total_size
=
max_output_size
)
self
.
assertIsNone
(
nmsed_masks
)
with
self
.
test_session
()
as
sess
:
with
self
.
test_session
()
as
sess
:
nms_output
=
sess
.
run
(
nms_dict
)
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
self
.
assertAllClose
(
nms_output
[
'detection_boxes'
],
exp_nms_corners
)
num_detections
)
=
sess
.
run
([
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
self
.
assertAllClose
(
nms_output
[
'detection_scores'
],
exp_nms_scores
)
num_detections
])
self
.
assertAllClose
(
nms_output
[
'detection_classes'
],
exp_nms_classes
)
self
.
assertAllClose
(
nmsed_boxes
,
exp_nms_corners
)
self
.
assertEqual
(
nms_output
[
'num_detections'
],
[
4
])
self
.
assertAllClose
(
nmsed_scores
,
exp_nms_scores
)
self
.
assertAllClose
(
nmsed_classes
,
exp_nms_classes
)
self
.
assertEqual
(
num_detections
,
[
4
])
def
test_batch_multiclass_nms_with_batch_size_2
(
self
):
def
test_batch_multiclass_nms_with_batch_size_2
(
self
):
boxes
=
tf
.
constant
([[[[
0
,
0
,
1
,
1
],
[
0
,
0
,
4
,
5
]],
boxes
=
tf
.
constant
([[[[
0
,
0
,
1
,
1
],
[
0
,
0
,
4
,
5
]],
...
@@ -524,28 +530,42 @@ class MulticlassNonMaxSuppressionTest(tf.test.TestCase):
...
@@ -524,28 +530,42 @@ class MulticlassNonMaxSuppressionTest(tf.test.TestCase):
iou_thresh
=
.
5
iou_thresh
=
.
5
max_output_size
=
4
max_output_size
=
4
exp_nms_corners
=
[[[
0
,
10
,
1
,
11
],
exp_nms_corners
=
np
.
array
([[[
0
,
10
,
1
,
11
],
[
0
,
0
,
1
,
1
],
[
0
,
0
,
1
,
1
],
[
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
]],
[
0
,
0
,
0
,
0
]],
[[
0
,
999
,
2
,
1004
],
[[
0
,
999
,
2
,
1004
],
[
0
,
10.1
,
1
,
11.1
],
[
0
,
10.1
,
1
,
11.1
],
[
0
,
100
,
1
,
101
],
[
0
,
100
,
1
,
101
],
[
0
,
0
,
0
,
0
]]]
[
0
,
0
,
0
,
0
]]])
exp_nms_scores
=
[[.
95
,
.
9
,
0
,
0
],
exp_nms_scores
=
np
.
array
([[.
95
,
.
9
,
0
,
0
],
[.
85
,
.
5
,
.
3
,
0
]]
[.
85
,
.
5
,
.
3
,
0
]])
exp_nms_classes
=
[[
0
,
0
,
0
,
0
],
exp_nms_classes
=
np
.
array
([[
0
,
0
,
0
,
0
],
[
1
,
0
,
0
,
0
]]
[
1
,
0
,
0
,
0
]])
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
nmsed_masks
,
num_detections
)
=
post_processing
.
batch_multiclass_non_max_suppression
(
boxes
,
scores
,
score_thresh
,
iou_thresh
,
max_size_per_class
=
max_output_size
,
max_total_size
=
max_output_size
)
self
.
assertIsNone
(
nmsed_masks
)
# Check static shapes
self
.
assertAllEqual
(
nmsed_boxes
.
shape
.
as_list
(),
exp_nms_corners
.
shape
)
self
.
assertAllEqual
(
nmsed_scores
.
shape
.
as_list
(),
exp_nms_scores
.
shape
)
self
.
assertAllEqual
(
nmsed_classes
.
shape
.
as_list
(),
exp_nms_classes
.
shape
)
self
.
assertEqual
(
num_detections
.
shape
.
as_list
(),
[
2
])
nms_dict
=
post_processing
.
batch_multiclass_non_max_suppression
(
boxes
,
scores
,
score_thresh
,
iou_thresh
,
max_size_per_class
=
max_output_size
,
max_total_size
=
max_output_size
)
with
self
.
test_session
()
as
sess
:
with
self
.
test_session
()
as
sess
:
nms_output
=
sess
.
run
(
nms_dict
)
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
self
.
assertAllClose
(
nms_output
[
'detection_boxes'
],
exp_nms_corners
)
num_detections
)
=
sess
.
run
([
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
self
.
assertAllClose
(
nms_output
[
'detection_scores'
],
exp_nms_scores
)
num_detections
])
self
.
assertAllClose
(
nms_output
[
'detection_classes'
],
exp_nms_classes
)
self
.
assertAllClose
(
nmsed_boxes
,
exp_nms_corners
)
self
.
assertAllClose
(
nms_output
[
'num_detections'
],
[
2
,
3
])
self
.
assertAllClose
(
nmsed_scores
,
exp_nms_scores
)
self
.
assertAllClose
(
nmsed_classes
,
exp_nms_classes
)
self
.
assertAllClose
(
num_detections
,
[
2
,
3
])
def
test_batch_multiclass_nms_with_masks
(
self
):
def
test_batch_multiclass_nms_with_masks
(
self
):
boxes
=
tf
.
constant
([[[[
0
,
0
,
1
,
1
],
[
0
,
0
,
4
,
5
]],
boxes
=
tf
.
constant
([[[[
0
,
0
,
1
,
1
],
[
0
,
0
,
4
,
5
]],
...
@@ -574,38 +594,126 @@ class MulticlassNonMaxSuppressionTest(tf.test.TestCase):
...
@@ -574,38 +594,126 @@ class MulticlassNonMaxSuppressionTest(tf.test.TestCase):
iou_thresh
=
.
5
iou_thresh
=
.
5
max_output_size
=
4
max_output_size
=
4
exp_nms_corners
=
[[[
0
,
10
,
1
,
11
],
exp_nms_corners
=
np
.
array
([[[
0
,
10
,
1
,
11
],
[
0
,
0
,
1
,
1
],
[
0
,
0
,
1
,
1
],
[
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
]],
[
0
,
0
,
0
,
0
]],
[[
0
,
999
,
2
,
1004
],
[[
0
,
999
,
2
,
1004
],
[
0
,
10.1
,
1
,
11.1
],
[
0
,
10.1
,
1
,
11.1
],
[
0
,
100
,
1
,
101
],
[
0
,
100
,
1
,
101
],
[
0
,
0
,
0
,
0
]]]
[
0
,
0
,
0
,
0
]]])
exp_nms_scores
=
[[.
95
,
.
9
,
0
,
0
],
exp_nms_scores
=
np
.
array
([[.
95
,
.
9
,
0
,
0
],
[.
85
,
.
5
,
.
3
,
0
]]
[.
85
,
.
5
,
.
3
,
0
]])
exp_nms_classes
=
[[
0
,
0
,
0
,
0
],
exp_nms_classes
=
np
.
array
([[
0
,
0
,
0
,
0
],
[
1
,
0
,
0
,
0
]]
[
1
,
0
,
0
,
0
]])
exp_nms_masks
=
[[[[
6
,
7
],
[
8
,
9
]],
exp_nms_masks
=
np
.
array
([[[[
6
,
7
],
[
8
,
9
]],
[[
0
,
1
],
[
2
,
3
]],
[[
0
,
1
],
[
2
,
3
]],
[[
0
,
0
],
[
0
,
0
]],
[[
0
,
0
],
[
0
,
0
]],
[[
0
,
0
],
[
0
,
0
]]],
[[
0
,
0
],
[
0
,
0
]]],
[[[
13
,
14
],
[
15
,
16
]],
[[[
13
,
14
],
[
15
,
16
]],
[[
8
,
9
],
[
10
,
11
]],
[[
8
,
9
],
[
10
,
11
]],
[[
10
,
11
],
[
12
,
13
]],
[[
10
,
11
],
[
12
,
13
]],
[[
0
,
0
],
[
0
,
0
]]]]
[[
0
,
0
],
[
0
,
0
]]]])
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
nmsed_masks
,
num_detections
)
=
post_processing
.
batch_multiclass_non_max_suppression
(
boxes
,
scores
,
score_thresh
,
iou_thresh
,
max_size_per_class
=
max_output_size
,
max_total_size
=
max_output_size
,
masks
=
masks
)
# Check static shapes
self
.
assertAllEqual
(
nmsed_boxes
.
shape
.
as_list
(),
exp_nms_corners
.
shape
)
self
.
assertAllEqual
(
nmsed_scores
.
shape
.
as_list
(),
exp_nms_scores
.
shape
)
self
.
assertAllEqual
(
nmsed_classes
.
shape
.
as_list
(),
exp_nms_classes
.
shape
)
self
.
assertAllEqual
(
nmsed_masks
.
shape
.
as_list
(),
exp_nms_masks
.
shape
)
self
.
assertEqual
(
num_detections
.
shape
.
as_list
(),
[
2
])
with
self
.
test_session
()
as
sess
:
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
nmsed_masks
,
num_detections
)
=
sess
.
run
([
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
nmsed_masks
,
num_detections
])
self
.
assertAllClose
(
nmsed_boxes
,
exp_nms_corners
)
self
.
assertAllClose
(
nmsed_scores
,
exp_nms_scores
)
self
.
assertAllClose
(
nmsed_classes
,
exp_nms_classes
)
self
.
assertAllClose
(
num_detections
,
[
2
,
3
])
self
.
assertAllClose
(
nmsed_masks
,
exp_nms_masks
)
def
test_batch_multiclass_nms_with_dynamic_batch_size
(
self
):
boxes_placeholder
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
None
,
None
,
2
,
4
))
scores_placeholder
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
None
,
None
,
2
))
masks_placeholder
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
None
,
None
,
2
,
2
,
2
))
boxes
=
np
.
array
([[[[
0
,
0
,
1
,
1
],
[
0
,
0
,
4
,
5
]],
[[
0
,
0.1
,
1
,
1.1
],
[
0
,
0.1
,
2
,
1.1
]],
[[
0
,
-
0.1
,
1
,
0.9
],
[
0
,
-
0.1
,
1
,
0.9
]],
[[
0
,
10
,
1
,
11
],
[
0
,
10
,
1
,
11
]]],
[[[
0
,
10.1
,
1
,
11.1
],
[
0
,
10.1
,
1
,
11.1
]],
[[
0
,
100
,
1
,
101
],
[
0
,
100
,
1
,
101
]],
[[
0
,
1000
,
1
,
1002
],
[
0
,
999
,
2
,
1004
]],
[[
0
,
1000
,
1
,
1002.1
],
[
0
,
999
,
2
,
1002.7
]]]])
scores
=
np
.
array
([[[.
9
,
0.01
],
[.
75
,
0.05
],
[.
6
,
0.01
],
[.
95
,
0
]],
[[.
5
,
0.01
],
[.
3
,
0.01
],
[.
01
,
.
85
],
[.
01
,
.
5
]]])
masks
=
np
.
array
([[[[[
0
,
1
],
[
2
,
3
]],
[[
1
,
2
],
[
3
,
4
]]],
[[[
2
,
3
],
[
4
,
5
]],
[[
3
,
4
],
[
5
,
6
]]],
[[[
4
,
5
],
[
6
,
7
]],
[[
5
,
6
],
[
7
,
8
]]],
[[[
6
,
7
],
[
8
,
9
]],
[[
7
,
8
],
[
9
,
10
]]]],
[[[[
8
,
9
],
[
10
,
11
]],
[[
9
,
10
],
[
11
,
12
]]],
[[[
10
,
11
],
[
12
,
13
]],
[[
11
,
12
],
[
13
,
14
]]],
[[[
12
,
13
],
[
14
,
15
]],
[[
13
,
14
],
[
15
,
16
]]],
[[[
14
,
15
],
[
16
,
17
]],
[[
15
,
16
],
[
17
,
18
]]]]])
score_thresh
=
0.1
iou_thresh
=
.
5
max_output_size
=
4
exp_nms_corners
=
np
.
array
([[[
0
,
10
,
1
,
11
],
[
0
,
0
,
1
,
1
],
[
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
]],
[[
0
,
999
,
2
,
1004
],
[
0
,
10.1
,
1
,
11.1
],
[
0
,
100
,
1
,
101
],
[
0
,
0
,
0
,
0
]]])
exp_nms_scores
=
np
.
array
([[.
95
,
.
9
,
0
,
0
],
[.
85
,
.
5
,
.
3
,
0
]])
exp_nms_classes
=
np
.
array
([[
0
,
0
,
0
,
0
],
[
1
,
0
,
0
,
0
]])
exp_nms_masks
=
np
.
array
([[[[
6
,
7
],
[
8
,
9
]],
[[
0
,
1
],
[
2
,
3
]],
[[
0
,
0
],
[
0
,
0
]],
[[
0
,
0
],
[
0
,
0
]]],
[[[
13
,
14
],
[
15
,
16
]],
[[
8
,
9
],
[
10
,
11
]],
[[
10
,
11
],
[
12
,
13
]],
[[
0
,
0
],
[
0
,
0
]]]])
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
nmsed_masks
,
num_detections
)
=
post_processing
.
batch_multiclass_non_max_suppression
(
boxes_placeholder
,
scores_placeholder
,
score_thresh
,
iou_thresh
,
max_size_per_class
=
max_output_size
,
max_total_size
=
max_output_size
,
masks
=
masks_placeholder
)
# Check static shapes
self
.
assertAllEqual
(
nmsed_boxes
.
shape
.
as_list
(),
[
None
,
4
,
4
])
self
.
assertAllEqual
(
nmsed_scores
.
shape
.
as_list
(),
[
None
,
4
])
self
.
assertAllEqual
(
nmsed_classes
.
shape
.
as_list
(),
[
None
,
4
])
self
.
assertAllEqual
(
nmsed_masks
.
shape
.
as_list
(),
[
None
,
4
,
2
,
2
])
self
.
assertEqual
(
num_detections
.
shape
.
as_list
(),
[
None
])
nms_dict
=
post_processing
.
batch_multiclass_non_max_suppression
(
boxes
,
scores
,
score_thresh
,
iou_thresh
,
max_size_per_class
=
max_output_size
,
max_total_size
=
max_output_size
,
masks
=
masks
)
with
self
.
test_session
()
as
sess
:
with
self
.
test_session
()
as
sess
:
nms_output
=
sess
.
run
(
nms_dict
)
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
nmsed_masks
,
self
.
assertAllClose
(
nms_output
[
'detection_boxes'
],
exp_nms_corners
)
num_detections
)
=
sess
.
run
([
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
self
.
assertAllClose
(
nms_output
[
'detection_scores'
],
exp_nms_scores
)
nmsed_masks
,
num_detections
],
self
.
assertAllClose
(
nms_output
[
'detection_classes'
],
exp_nms_classes
)
feed_dict
=
{
boxes_placeholder
:
boxes
,
self
.
assertAllClose
(
nms_output
[
'num_detections'
],
[
2
,
3
])
scores_placeholder
:
scores
,
self
.
assertAllClose
(
nms_output
[
'detection_masks'
],
exp_nms_masks
)
masks_placeholder
:
masks
})
self
.
assertAllClose
(
nmsed_boxes
,
exp_nms_corners
)
self
.
assertAllClose
(
nmsed_scores
,
exp_nms_scores
)
self
.
assertAllClose
(
nmsed_classes
,
exp_nms_classes
)
self
.
assertAllClose
(
num_detections
,
[
2
,
3
])
self
.
assertAllClose
(
nmsed_masks
,
exp_nms_masks
)
def
test_batch_multiclass_nms_with_masks_and_num_valid_boxes
(
self
):
def
test_batch_multiclass_nms_with_masks_and_num_valid_boxes
(
self
):
boxes
=
tf
.
constant
([[[[
0
,
0
,
1
,
1
],
[
0
,
0
,
4
,
5
]],
boxes
=
tf
.
constant
([[[[
0
,
0
,
1
,
1
],
[
0
,
0
,
4
,
5
]],
...
@@ -656,17 +764,21 @@ class MulticlassNonMaxSuppressionTest(tf.test.TestCase):
...
@@ -656,17 +764,21 @@ class MulticlassNonMaxSuppressionTest(tf.test.TestCase):
[[
0
,
0
],
[
0
,
0
]],
[[
0
,
0
],
[
0
,
0
]],
[[
0
,
0
],
[
0
,
0
]]]]
[[
0
,
0
],
[
0
,
0
]]]]
nms_dict
=
post_processing
.
batch_multiclass_non_max_suppression
(
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
nmsed_masks
,
boxes
,
scores
,
score_thresh
,
iou_thresh
,
num_detections
)
=
post_processing
.
batch_multiclass_non_max_suppression
(
max_size_per_class
=
max_output_size
,
max_total_size
=
max_output_size
,
boxes
,
scores
,
score_thresh
,
iou_thresh
,
num_valid_boxes
=
num_valid_boxes
,
masks
=
masks
)
max_size_per_class
=
max_output_size
,
max_total_size
=
max_output_size
,
num_valid_boxes
=
num_valid_boxes
,
masks
=
masks
)
with
self
.
test_session
()
as
sess
:
with
self
.
test_session
()
as
sess
:
nms_output
=
sess
.
run
(
nms_dict
)
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
nmsed_masks
,
self
.
assertAllClose
(
nms_output
[
'detection_boxes'
],
exp_nms_corners
)
num_detections
)
=
sess
.
run
([
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
self
.
assertAllClose
(
nms_output
[
'detection_scores'
],
exp_nms_scores
)
nmsed_masks
,
num_detections
])
self
.
assertAllClose
(
nms_output
[
'detection_classes'
],
exp_nms_classes
)
self
.
assertAllClose
(
nmsed_boxes
,
exp_nms_corners
)
self
.
assertAllClose
(
nms_output
[
'num_detections'
],
[
1
,
1
])
self
.
assertAllClose
(
nmsed_scores
,
exp_nms_scores
)
self
.
assertAllClose
(
nms_output
[
'detection_masks'
],
exp_nms_masks
)
self
.
assertAllClose
(
nmsed_classes
,
exp_nms_classes
)
self
.
assertAllClose
(
num_detections
,
[
1
,
1
])
self
.
assertAllClose
(
nmsed_masks
,
exp_nms_masks
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
object_detection/core/preprocessor.py
View file @
dff0f0c1
...
@@ -1255,6 +1255,82 @@ def random_resize_method(image, target_size):
...
@@ -1255,6 +1255,82 @@ def random_resize_method(image, target_size):
return
resized_image
return
resized_image
def
_compute_new_static_size
(
image
,
min_dimension
,
max_dimension
):
"""Compute new static shape for resize_to_range method."""
image_shape
=
image
.
get_shape
().
as_list
()
orig_height
=
image_shape
[
0
]
orig_width
=
image_shape
[
1
]
orig_min_dim
=
min
(
orig_height
,
orig_width
)
# Calculates the larger of the possible sizes
large_scale_factor
=
min_dimension
/
float
(
orig_min_dim
)
# Scaling orig_(height|width) by large_scale_factor will make the smaller
# dimension equal to min_dimension, save for floating point rounding errors.
# For reasonably-sized images, taking the nearest integer will reliably
# eliminate this error.
large_height
=
int
(
round
(
orig_height
*
large_scale_factor
))
large_width
=
int
(
round
(
orig_width
*
large_scale_factor
))
large_size
=
[
large_height
,
large_width
]
if
max_dimension
:
# Calculates the smaller of the possible sizes, use that if the larger
# is too big.
orig_max_dim
=
max
(
orig_height
,
orig_width
)
small_scale_factor
=
max_dimension
/
float
(
orig_max_dim
)
# Scaling orig_(height|width) by small_scale_factor will make the larger
# dimension equal to max_dimension, save for floating point rounding
# errors. For reasonably-sized images, taking the nearest integer will
# reliably eliminate this error.
small_height
=
int
(
round
(
orig_height
*
small_scale_factor
))
small_width
=
int
(
round
(
orig_width
*
small_scale_factor
))
small_size
=
[
small_height
,
small_width
]
new_size
=
large_size
if
max
(
large_size
)
>
max_dimension
:
new_size
=
small_size
else
:
new_size
=
large_size
return
tf
.
constant
(
new_size
)
def
_compute_new_dynamic_size
(
image
,
min_dimension
,
max_dimension
):
"""Compute new dynamic shape for resize_to_range method."""
image_shape
=
tf
.
shape
(
image
)
orig_height
=
tf
.
to_float
(
image_shape
[
0
])
orig_width
=
tf
.
to_float
(
image_shape
[
1
])
orig_min_dim
=
tf
.
minimum
(
orig_height
,
orig_width
)
# Calculates the larger of the possible sizes
min_dimension
=
tf
.
constant
(
min_dimension
,
dtype
=
tf
.
float32
)
large_scale_factor
=
min_dimension
/
orig_min_dim
# Scaling orig_(height|width) by large_scale_factor will make the smaller
# dimension equal to min_dimension, save for floating point rounding errors.
# For reasonably-sized images, taking the nearest integer will reliably
# eliminate this error.
large_height
=
tf
.
to_int32
(
tf
.
round
(
orig_height
*
large_scale_factor
))
large_width
=
tf
.
to_int32
(
tf
.
round
(
orig_width
*
large_scale_factor
))
large_size
=
tf
.
stack
([
large_height
,
large_width
])
if
max_dimension
:
# Calculates the smaller of the possible sizes, use that if the larger
# is too big.
orig_max_dim
=
tf
.
maximum
(
orig_height
,
orig_width
)
max_dimension
=
tf
.
constant
(
max_dimension
,
dtype
=
tf
.
float32
)
small_scale_factor
=
max_dimension
/
orig_max_dim
# Scaling orig_(height|width) by small_scale_factor will make the larger
# dimension equal to max_dimension, save for floating point rounding
# errors. For reasonably-sized images, taking the nearest integer will
# reliably eliminate this error.
small_height
=
tf
.
to_int32
(
tf
.
round
(
orig_height
*
small_scale_factor
))
small_width
=
tf
.
to_int32
(
tf
.
round
(
orig_width
*
small_scale_factor
))
small_size
=
tf
.
stack
([
small_height
,
small_width
])
new_size
=
tf
.
cond
(
tf
.
to_float
(
tf
.
reduce_max
(
large_size
))
>
max_dimension
,
lambda
:
small_size
,
lambda
:
large_size
)
else
:
new_size
=
large_size
return
new_size
def
resize_to_range
(
image
,
def
resize_to_range
(
image
,
masks
=
None
,
masks
=
None
,
min_dimension
=
None
,
min_dimension
=
None
,
...
@@ -1295,64 +1371,22 @@ def resize_to_range(image,
...
@@ -1295,64 +1371,22 @@ def resize_to_range(image,
raise
ValueError
(
'Image should be 3D tensor'
)
raise
ValueError
(
'Image should be 3D tensor'
)
with
tf
.
name_scope
(
'ResizeToRange'
,
values
=
[
image
,
min_dimension
]):
with
tf
.
name_scope
(
'ResizeToRange'
,
values
=
[
image
,
min_dimension
]):
image_shape
=
tf
.
shape
(
image
)
if
image
.
get_shape
().
is_fully_defined
():
orig_height
=
tf
.
to_float
(
image_shape
[
0
])
new_size
=
_compute_new_static_size
(
image
,
min_dimension
,
orig_width
=
tf
.
to_float
(
image_shape
[
1
])
max_dimension
)
orig_min_dim
=
tf
.
minimum
(
orig_height
,
orig_width
)
# Calculates the larger of the possible sizes
min_dimension
=
tf
.
constant
(
min_dimension
,
dtype
=
tf
.
float32
)
large_scale_factor
=
min_dimension
/
orig_min_dim
# Scaling orig_(height|width) by large_scale_factor will make the smaller
# dimension equal to min_dimension, save for floating point rounding errors.
# For reasonably-sized images, taking the nearest integer will reliably
# eliminate this error.
large_height
=
tf
.
to_int32
(
tf
.
round
(
orig_height
*
large_scale_factor
))
large_width
=
tf
.
to_int32
(
tf
.
round
(
orig_width
*
large_scale_factor
))
large_size
=
tf
.
stack
([
large_height
,
large_width
])
if
max_dimension
:
# Calculates the smaller of the possible sizes, use that if the larger
# is too big.
orig_max_dim
=
tf
.
maximum
(
orig_height
,
orig_width
)
max_dimension
=
tf
.
constant
(
max_dimension
,
dtype
=
tf
.
float32
)
small_scale_factor
=
max_dimension
/
orig_max_dim
# Scaling orig_(height|width) by small_scale_factor will make the larger
# dimension equal to max_dimension, save for floating point rounding
# errors. For reasonably-sized images, taking the nearest integer will
# reliably eliminate this error.
small_height
=
tf
.
to_int32
(
tf
.
round
(
orig_height
*
small_scale_factor
))
small_width
=
tf
.
to_int32
(
tf
.
round
(
orig_width
*
small_scale_factor
))
small_size
=
tf
.
stack
([
small_height
,
small_width
])
new_size
=
tf
.
cond
(
tf
.
to_float
(
tf
.
reduce_max
(
large_size
))
>
max_dimension
,
lambda
:
small_size
,
lambda
:
large_size
)
else
:
else
:
new_size
=
large_size
new_size
=
_compute_new_dynamic_size
(
image
,
min_dimension
,
max_dimension
)
new_image
=
tf
.
image
.
resize_images
(
image
,
new_size
,
new_image
=
tf
.
image
.
resize_images
(
image
,
new_size
,
align_corners
=
align_corners
)
align_corners
=
align_corners
)
result
=
new_image
result
=
new_image
if
masks
is
not
None
:
if
masks
is
not
None
:
num_instances
=
tf
.
shape
(
masks
)[
0
]
new_masks
=
tf
.
expand_dims
(
masks
,
3
)
new_masks
=
tf
.
image
.
resize_nearest_neighbor
(
new_masks
,
new_size
,
def
resize_masks_branch
():
align_corners
=
align_corners
)
new_masks
=
tf
.
expand_dims
(
masks
,
3
)
new_masks
=
tf
.
squeeze
(
new_masks
,
3
)
new_masks
=
tf
.
image
.
resize_nearest_neighbor
(
result
=
[
new_image
,
new_masks
]
new_masks
,
new_size
,
align_corners
=
align_corners
)
new_masks
=
tf
.
squeeze
(
new_masks
,
axis
=
3
)
return
new_masks
def
reshape_masks_branch
():
new_masks
=
tf
.
reshape
(
masks
,
[
0
,
new_size
[
0
],
new_size
[
1
]])
return
new_masks
masks
=
tf
.
cond
(
num_instances
>
0
,
resize_masks_branch
,
reshape_masks_branch
)
result
=
[
new_image
,
masks
]
return
result
return
result
...
...
object_detection/core/preprocessor_test.py
View file @
dff0f0c1
...
@@ -1395,7 +1395,7 @@ class PreprocessorTest(tf.test.TestCase):
...
@@ -1395,7 +1395,7 @@ class PreprocessorTest(tf.test.TestCase):
self
.
assertAllEqual
(
expected_images_shape_
,
self
.
assertAllEqual
(
expected_images_shape_
,
resized_images_shape_
)
resized_images_shape_
)
def
testResizeToRange
(
self
):
def
testResizeToRange
PreservesStaticSpatialShape
(
self
):
"""Tests image resizing, checking output sizes."""
"""Tests image resizing, checking output sizes."""
in_shape_list
=
[[
60
,
40
,
3
],
[
15
,
30
,
3
],
[
15
,
50
,
3
]]
in_shape_list
=
[[
60
,
40
,
3
],
[
15
,
30
,
3
],
[
15
,
50
,
3
]]
min_dim
=
50
min_dim
=
50
...
@@ -1406,13 +1406,27 @@ class PreprocessorTest(tf.test.TestCase):
...
@@ -1406,13 +1406,27 @@ class PreprocessorTest(tf.test.TestCase):
in_image
=
tf
.
random_uniform
(
in_shape
)
in_image
=
tf
.
random_uniform
(
in_shape
)
out_image
=
preprocessor
.
resize_to_range
(
out_image
=
preprocessor
.
resize_to_range
(
in_image
,
min_dimension
=
min_dim
,
max_dimension
=
max_dim
)
in_image
,
min_dimension
=
min_dim
,
max_dimension
=
max_dim
)
out_image_shape
=
tf
.
shape
(
out_image
)
self
.
assertAllEqual
(
out_image
.
get_shape
().
as_list
(),
expected_shape
)
def
testResizeToRangeWithDynamicSpatialShape
(
self
):
"""Tests image resizing, checking output sizes."""
in_shape_list
=
[[
60
,
40
,
3
],
[
15
,
30
,
3
],
[
15
,
50
,
3
]]
min_dim
=
50
max_dim
=
100
expected_shape_list
=
[[
75
,
50
,
3
],
[
50
,
100
,
3
],
[
30
,
100
,
3
]]
for
in_shape
,
expected_shape
in
zip
(
in_shape_list
,
expected_shape_list
):
in_image
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
None
,
None
,
3
))
out_image
=
preprocessor
.
resize_to_range
(
in_image
,
min_dimension
=
min_dim
,
max_dimension
=
max_dim
)
out_image_shape
=
tf
.
shape
(
out_image
)
with
self
.
test_session
()
as
sess
:
with
self
.
test_session
()
as
sess
:
out_image_shape
=
sess
.
run
(
out_image_shape
)
out_image_shape
=
sess
.
run
(
out_image_shape
,
feed_dict
=
{
in_image
:
np
.
random
.
randn
(
*
in_shape
)})
self
.
assertAllEqual
(
out_image_shape
,
expected_shape
)
self
.
assertAllEqual
(
out_image_shape
,
expected_shape
)
def
testResizeToRangeWithMasks
(
self
):
def
testResizeToRangeWithMasks
PreservesStaticSpatialShape
(
self
):
"""Tests image resizing, checking output sizes."""
"""Tests image resizing, checking output sizes."""
in_image_shape_list
=
[[
60
,
40
,
3
],
[
15
,
30
,
3
]]
in_image_shape_list
=
[[
60
,
40
,
3
],
[
15
,
30
,
3
]]
in_masks_shape_list
=
[[
15
,
60
,
40
],
[
10
,
15
,
30
]]
in_masks_shape_list
=
[[
15
,
60
,
40
],
[
10
,
15
,
30
]]
...
@@ -1430,30 +1444,25 @@ class PreprocessorTest(tf.test.TestCase):
...
@@ -1430,30 +1444,25 @@ class PreprocessorTest(tf.test.TestCase):
in_masks
=
tf
.
random_uniform
(
in_masks_shape
)
in_masks
=
tf
.
random_uniform
(
in_masks_shape
)
out_image
,
out_masks
=
preprocessor
.
resize_to_range
(
out_image
,
out_masks
=
preprocessor
.
resize_to_range
(
in_image
,
in_masks
,
min_dimension
=
min_dim
,
max_dimension
=
max_dim
)
in_image
,
in_masks
,
min_dimension
=
min_dim
,
max_dimension
=
max_dim
)
out_image_shape
=
tf
.
shape
(
out_image
)
self
.
assertAllEqual
(
out_masks
.
get_shape
().
as_list
(),
expected_mask_shape
)
out_masks_shape
=
tf
.
shape
(
out_masks
)
self
.
assertAllEqual
(
out_image
.
get_shape
().
as_list
(),
expected_image_shape
)
with
self
.
test_session
()
as
sess
:
out_image_shape
,
out_masks_shape
=
sess
.
run
(
[
out_image_shape
,
out_masks_shape
])
self
.
assertAllEqual
(
out_image_shape
,
expected_image_shape
)
self
.
assertAllEqual
(
out_masks_shape
,
expected_mask_shape
)
def
testResizeToRangeWith
NoInstanceMask
(
self
):
def
testResizeToRangeWith
MasksAndDynamicSpatialShape
(
self
):
"""Tests image resizing, checking output sizes."""
"""Tests image resizing, checking output sizes."""
in_image_shape_list
=
[[
60
,
40
,
3
],
[
15
,
30
,
3
]]
in_image_shape_list
=
[[
60
,
40
,
3
],
[
15
,
30
,
3
]]
in_masks_shape_list
=
[[
0
,
60
,
40
],
[
0
,
15
,
30
]]
in_masks_shape_list
=
[[
15
,
60
,
40
],
[
1
0
,
15
,
30
]]
min_dim
=
50
min_dim
=
50
max_dim
=
100
max_dim
=
100
expected_image_shape_list
=
[[
75
,
50
,
3
],
[
50
,
100
,
3
]]
expected_image_shape_list
=
[[
75
,
50
,
3
],
[
50
,
100
,
3
]]
expected_masks_shape_list
=
[[
0
,
75
,
50
],
[
0
,
50
,
100
]]
expected_masks_shape_list
=
[[
15
,
75
,
50
],
[
1
0
,
50
,
100
]]
for
(
in_image_shape
,
expected_image_shape
,
in_masks_shape
,
for
(
in_image_shape
,
expected_image_shape
,
in_masks_shape
,
expected_mask_shape
)
in
zip
(
in_image_shape_list
,
expected_mask_shape
)
in
zip
(
in_image_shape_list
,
expected_image_shape_list
,
expected_image_shape_list
,
in_masks_shape_list
,
in_masks_shape_list
,
expected_masks_shape_list
):
expected_masks_shape_list
):
in_image
=
tf
.
random_uniform
(
in_image_shape
)
in_image
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
None
,
None
,
3
))
in_masks
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
None
,
None
,
None
))
in_masks
=
tf
.
random_uniform
(
in_masks_shape
)
in_masks
=
tf
.
random_uniform
(
in_masks_shape
)
out_image
,
out_masks
=
preprocessor
.
resize_to_range
(
out_image
,
out_masks
=
preprocessor
.
resize_to_range
(
in_image
,
in_masks
,
min_dimension
=
min_dim
,
max_dimension
=
max_dim
)
in_image
,
in_masks
,
min_dimension
=
min_dim
,
max_dimension
=
max_dim
)
...
@@ -1462,38 +1471,15 @@ class PreprocessorTest(tf.test.TestCase):
...
@@ -1462,38 +1471,15 @@ class PreprocessorTest(tf.test.TestCase):
with
self
.
test_session
()
as
sess
:
with
self
.
test_session
()
as
sess
:
out_image_shape
,
out_masks_shape
=
sess
.
run
(
out_image_shape
,
out_masks_shape
=
sess
.
run
(
[
out_image_shape
,
out_masks_shape
])
[
out_image_shape
,
out_masks_shape
],
self
.
assertAllEqual
(
out_image_shape
,
expected_image_shape
)
feed_dict
=
{
self
.
assertAllEqual
(
out_masks_shape
,
expected_mask_shape
)
in_image
:
np
.
random
.
randn
(
*
in_image_shape
),
in_masks
:
np
.
random
.
randn
(
*
in_masks_shape
)
def
testResizeImageWithMasks
(
self
):
})
"""Tests image resizing, checking output sizes."""
in_image_shape_list
=
[[
60
,
40
,
3
],
[
15
,
30
,
3
]]
in_masks_shape_list
=
[[
15
,
60
,
40
],
[
10
,
15
,
30
]]
height
=
50
width
=
100
expected_image_shape_list
=
[[
50
,
100
,
3
],
[
50
,
100
,
3
]]
expected_masks_shape_list
=
[[
15
,
50
,
100
],
[
10
,
50
,
100
]]
for
(
in_image_shape
,
expected_image_shape
,
in_masks_shape
,
expected_mask_shape
)
in
zip
(
in_image_shape_list
,
expected_image_shape_list
,
in_masks_shape_list
,
expected_masks_shape_list
):
in_image
=
tf
.
random_uniform
(
in_image_shape
)
in_masks
=
tf
.
random_uniform
(
in_masks_shape
)
out_image
,
out_masks
=
preprocessor
.
resize_image
(
in_image
,
in_masks
,
new_height
=
height
,
new_width
=
width
)
out_image_shape
=
tf
.
shape
(
out_image
)
out_masks_shape
=
tf
.
shape
(
out_masks
)
with
self
.
test_session
()
as
sess
:
out_image_shape
,
out_masks_shape
=
sess
.
run
(
[
out_image_shape
,
out_masks_shape
])
self
.
assertAllEqual
(
out_image_shape
,
expected_image_shape
)
self
.
assertAllEqual
(
out_image_shape
,
expected_image_shape
)
self
.
assertAllEqual
(
out_masks_shape
,
expected_mask_shape
)
self
.
assertAllEqual
(
out_masks_shape
,
expected_mask_shape
)
def
testResize
Ima
geWith
No
InstanceMask
(
self
):
def
testResize
ToRan
geWithInstanceMask
sTensorOfSizeZero
(
self
):
"""Tests image resizing, checking output sizes."""
"""Tests image resizing, checking output sizes."""
in_image_shape_list
=
[[
60
,
40
,
3
],
[
15
,
30
,
3
]]
in_image_shape_list
=
[[
60
,
40
,
3
],
[
15
,
30
,
3
]]
in_masks_shape_list
=
[[
0
,
60
,
40
],
[
0
,
15
,
30
]]
in_masks_shape_list
=
[[
0
,
60
,
40
],
[
0
,
15
,
30
]]
...
...
object_detection/data/pascal_label_map.pbtxt
View file @
dff0f0c1
item {
id: 0
name: 'none_of_the_above'
}
item {
item {
id: 1
id: 1
name: 'aeroplane'
name: 'aeroplane'
...
...
object_detection/data/pet_label_map.pbtxt
View file @
dff0f0c1
item {
id: 0
name: 'none_of_the_above'
}
item {
item {
id: 1
id: 1
name: 'Abyssinian'
name: 'Abyssinian'
...
...
object_detection/export_inference_graph.py
View file @
dff0f0c1
...
@@ -16,16 +16,19 @@
...
@@ -16,16 +16,19 @@
r
"""Tool to export an object detection model for inference.
r
"""Tool to export an object detection model for inference.
Prepares an object detection tensorflow graph for inference using model
Prepares an object detection tensorflow graph for inference using model
configuration and an optional trained checkpoint. Outputs either an inference
configuration and an optional trained checkpoint. Outputs inference
graph or a SavedModel (https://tensorflow.github.io/serving/serving_basic.html).
graph, associated checkpoint files, a frozen inference graph and a
SavedModel (https://tensorflow.github.io/serving/serving_basic.html).
The inference graph contains one of three input nodes depending on the user
The inference graph contains one of three input nodes depending on the user
specified option.
specified option.
* `image_tensor`: Accepts a uint8 4-D tensor of shape [1, None, None, 3]
* `image_tensor`: Accepts a uint8 4-D tensor of shape [None, None, None, 3]
* `encoded_image_string_tensor`: Accepts a scalar string tensor of encoded PNG
* `encoded_image_string_tensor`: Accepts a 1-D string tensor of shape [None]
or JPEG image.
containing encoded PNG or JPEG images. Image resolutions are expected to be
* `tf_example`: Accepts a serialized TFExample proto. The batch size in this
the same if more than 1 image is provided.
case is always 1.
* `tf_example`: Accepts a 1-D string tensor of shape [None] containing
serialized TFExample protos. Image resolutions are expected to be the same
if more than 1 image is provided.
and the following output nodes returned by the model.postprocess(..):
and the following output nodes returned by the model.postprocess(..):
* `num_detections`: Outputs float32 tensors of the form [batch]
* `num_detections`: Outputs float32 tensors of the form [batch]
...
@@ -41,23 +44,27 @@ and the following output nodes returned by the model.postprocess(..):
...
@@ -41,23 +44,27 @@ and the following output nodes returned by the model.postprocess(..):
masks for each box if its present in the dictionary of postprocessed
masks for each box if its present in the dictionary of postprocessed
tensors returned by the model.
tensors returned by the model.
Note that currently `batch` is always 1, but we will support `batch` > 1 in
Notes:
the future.
* This tool uses `use_moving_averages` from eval_config to decide which
weights to freeze.
Optionally, one can freeze the graph by converting the weights in the provided
checkpoint as graph constants thereby eliminating the need to use a checkpoint
file during inference.
Note that this tool uses `use_moving_averages` from eval_config to decide
which weights to freeze.
Example Usage:
Example Usage:
--------------
--------------
python export_inference_graph \
python export_inference_graph \
--input_type image_tensor \
--input_type image_tensor \
--pipeline_config_path path/to/ssd_inception_v2.config \
--pipeline_config_path path/to/ssd_inception_v2.config \
--checkpoint_path path/to/model-ckpt \
--trained_checkpoint_prefix path/to/model.ckpt \
--inference_graph_path path/to/inference_graph.pb
--output_directory path/to/exported_model_directory
The expected output would be in the directory
path/to/exported_model_directory (which is created if it does not exist)
with contents:
- graph.pbtxt
- model.ckpt.data-00000-of-00001
- model.ckpt.info
- model.ckpt.meta
- frozen_inference_graph.pb
+ saved_model (a directory)
"""
"""
import
tensorflow
as
tf
import
tensorflow
as
tf
from
google.protobuf
import
text_format
from
google.protobuf
import
text_format
...
@@ -70,31 +77,29 @@ flags = tf.app.flags
...
@@ -70,31 +77,29 @@ flags = tf.app.flags
flags
.
DEFINE_string
(
'input_type'
,
'image_tensor'
,
'Type of input node. Can be '
flags
.
DEFINE_string
(
'input_type'
,
'image_tensor'
,
'Type of input node. Can be '
'one of [`image_tensor`, `encoded_image_string_tensor`, '
'one of [`image_tensor`, `encoded_image_string_tensor`, '
'`tf_example`]'
)
'`tf_example`]'
)
flags
.
DEFINE_string
(
'pipeline_config_path'
,
''
,
flags
.
DEFINE_string
(
'pipeline_config_path'
,
None
,
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
'file.'
)
'file.'
)
flags
.
DEFINE_string
(
'checkpoint_path'
,
''
,
'Optional path to checkpoint file. '
flags
.
DEFINE_string
(
'trained_checkpoint_prefix'
,
None
,
'If provided, bakes the weights from the checkpoint into '
'Path to trained checkpoint, typically of the form '
'the graph.'
)
'path/to/model.ckpt'
)
flags
.
DEFINE_string
(
'inference_graph_path'
,
''
,
'Path to write the output '
flags
.
DEFINE_string
(
'output_directory'
,
None
,
'Path to write outputs.'
)
'inference graph.'
)
flags
.
DEFINE_bool
(
'export_as_saved_model'
,
False
,
'Whether the exported graph '
'should be saved as a SavedModel'
)
FLAGS
=
flags
.
FLAGS
FLAGS
=
flags
.
FLAGS
def
main
(
_
):
def
main
(
_
):
assert
FLAGS
.
pipeline_config_path
,
'TrainEvalPipelineConfig missing.'
assert
FLAGS
.
pipeline_config_path
,
'`pipeline_config_path` is missing'
assert
FLAGS
.
inference_graph_path
,
'Inference graph path missing.'
assert
FLAGS
.
trained_checkpoint_prefix
,
(
assert
FLAGS
.
input_type
,
'Input type missing.'
'`trained_checkpoint_prefix` is missing'
)
assert
FLAGS
.
output_directory
,
'`output_directory` is missing'
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
with
tf
.
gfile
.
GFile
(
FLAGS
.
pipeline_config_path
,
'r'
)
as
f
:
with
tf
.
gfile
.
GFile
(
FLAGS
.
pipeline_config_path
,
'r'
)
as
f
:
text_format
.
Merge
(
f
.
read
(),
pipeline_config
)
text_format
.
Merge
(
f
.
read
(),
pipeline_config
)
exporter
.
export_inference_graph
(
FLAGS
.
input_type
,
pipeline_config
,
exporter
.
export_inference_graph
(
FLAGS
.
checkpoint_path
,
FLAGS
.
input_type
,
pipeline_config
,
FLAGS
.
trained_checkpoint_prefix
,
FLAGS
.
inference_graph_path
,
FLAGS
.
output_directory
)
FLAGS
.
export_as_saved_model
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
object_detection/exporter.py
View file @
dff0f0c1
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
import
logging
import
logging
import
os
import
os
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorflow.core.protobuf
import
rewriter_config_pb2
from
tensorflow.python
import
pywrap_tensorflow
from
tensorflow.python
import
pywrap_tensorflow
from
tensorflow.python.client
import
session
from
tensorflow.python.client
import
session
from
tensorflow.python.framework
import
graph_util
from
tensorflow.python.framework
import
graph_util
...
@@ -42,6 +43,7 @@ def freeze_graph_with_def_protos(
...
@@ -42,6 +43,7 @@ def freeze_graph_with_def_protos(
filename_tensor_name
,
filename_tensor_name
,
clear_devices
,
clear_devices
,
initializer_nodes
,
initializer_nodes
,
optimize_graph
=
False
,
variable_names_blacklist
=
''
):
variable_names_blacklist
=
''
):
"""Converts all variables in a graph and checkpoint into constants."""
"""Converts all variables in a graph and checkpoint into constants."""
del
restore_op_name
,
filename_tensor_name
# Unused by updated loading code.
del
restore_op_name
,
filename_tensor_name
# Unused by updated loading code.
...
@@ -61,86 +63,106 @@ def freeze_graph_with_def_protos(
...
@@ -61,86 +63,106 @@ def freeze_graph_with_def_protos(
for
node
in
input_graph_def
.
node
:
for
node
in
input_graph_def
.
node
:
node
.
device
=
''
node
.
device
=
''
_
=
importer
.
import_graph_def
(
input_graph_def
,
name
=
''
)
with
tf
.
Graph
().
as_default
():
tf
.
import_graph_def
(
input_graph_def
,
name
=
''
)
with
session
.
Session
()
as
sess
:
if
input_saver_def
:
if
optimize_graph
:
saver
=
saver_lib
.
Saver
(
saver_def
=
input_saver_def
)
logging
.
info
(
'Graph Rewriter optimizations enabled'
)
saver
.
restore
(
sess
,
input_checkpoint
)
rewrite_options
=
rewriter_config_pb2
.
RewriterConfig
(
optimize_tensor_layout
=
True
)
rewrite_options
.
optimizers
.
append
(
'pruning'
)
rewrite_options
.
optimizers
.
append
(
'constfold'
)
rewrite_options
.
optimizers
.
append
(
'layout'
)
graph_options
=
tf
.
GraphOptions
(
rewrite_options
=
rewrite_options
,
infer_shapes
=
True
)
else
:
else
:
var_list
=
{}
logging
.
info
(
'Graph Rewriter optimizations disabled'
)
reader
=
pywrap_tensorflow
.
NewCheckpointReader
(
input_checkpoint
)
graph_options
=
tf
.
GraphOptions
()
var_to_shape_map
=
reader
.
get_variable_to_shape_map
()
config
=
tf
.
ConfigProto
(
graph_options
=
graph_options
)
for
key
in
var_to_shape_map
:
with
session
.
Session
(
config
=
config
)
as
sess
:
try
:
if
input_saver_def
:
tensor
=
sess
.
graph
.
get_tensor_by_name
(
key
+
':0'
)
saver
=
saver_lib
.
Saver
(
saver_def
=
input_saver_def
)
except
KeyError
:
saver
.
restore
(
sess
,
input_checkpoint
)
# This tensor doesn't exist in the graph (for example it's
else
:
# 'global_step' or a similar housekeeping element) so skip it.
var_list
=
{}
continue
reader
=
pywrap_tensorflow
.
NewCheckpointReader
(
input_checkpoint
)
var_list
[
key
]
=
tensor
var_to_shape_map
=
reader
.
get_variable_to_shape_map
()
saver
=
saver_lib
.
Saver
(
var_list
=
var_list
)
for
key
in
var_to_shape_map
:
saver
.
restore
(
sess
,
input_checkpoint
)
try
:
if
initializer_nodes
:
tensor
=
sess
.
graph
.
get_tensor_by_name
(
key
+
':0'
)
sess
.
run
(
initializer_nodes
)
except
KeyError
:
# This tensor doesn't exist in the graph (for example it's
variable_names_blacklist
=
(
variable_names_blacklist
.
split
(
','
)
if
# 'global_step' or a similar housekeeping element) so skip it.
variable_names_blacklist
else
None
)
continue
output_graph_def
=
graph_util
.
convert_variables_to_constants
(
var_list
[
key
]
=
tensor
sess
,
saver
=
saver_lib
.
Saver
(
var_list
=
var_list
)
input_graph_def
,
saver
.
restore
(
sess
,
input_checkpoint
)
output_node_names
.
split
(
','
),
if
initializer_nodes
:
variable_names_blacklist
=
variable_names_blacklist
)
sess
.
run
(
initializer_nodes
)
variable_names_blacklist
=
(
variable_names_blacklist
.
split
(
','
)
if
variable_names_blacklist
else
None
)
output_graph_def
=
graph_util
.
convert_variables_to_constants
(
sess
,
input_graph_def
,
output_node_names
.
split
(
','
),
variable_names_blacklist
=
variable_names_blacklist
)
return
output_graph_def
return
output_graph_def
def
get_frozen_graph_def
(
inference_graph_def
,
use_moving_averages
,
input_checkpoint
,
output_node_names
):
"""Freezes all variables in a graph definition."""
saver
=
None
if
use_moving_averages
:
variable_averages
=
tf
.
train
.
ExponentialMovingAverage
(
0.0
)
variables_to_restore
=
variable_averages
.
variables_to_restore
()
saver
=
tf
.
train
.
Saver
(
variables_to_restore
)
else
:
saver
=
tf
.
train
.
Saver
()
frozen_graph_def
=
freeze_graph_with_def_protos
(
def
_image_tensor_input_placeholder
():
input_graph_def
=
inference_graph_def
,
"""Returns placeholder and input node that accepts a batch of uint8 images."""
input_saver_def
=
saver
.
as_saver_def
(),
input_tensor
=
tf
.
placeholder
(
dtype
=
tf
.
uint8
,
input_checkpoint
=
input_checkpoint
,
shape
=
(
None
,
None
,
None
,
3
),
output_node_names
=
output_node_names
,
name
=
'image_tensor'
)
restore_op_name
=
'save/restore_all'
,
return
input_tensor
,
input_tensor
filename_tensor_name
=
'save/Const:0'
,
clear_devices
=
True
,
initializer_nodes
=
''
)
return
frozen_graph_def
# TODO: Support batch tf example inputs.
def
_tf_example_input_placeholder
():
def
_tf_example_input_placeholder
():
tf_example_placeholder
=
tf
.
placeholder
(
"""Returns input that accepts a batch of strings with tf examples.
tf
.
string
,
shape
=
[],
name
=
'tf_example'
)
tensor_dict
=
tf_example_decoder
.
TfExampleDecoder
().
decode
(
tf_example_placeholder
)
image
=
tensor_dict
[
fields
.
InputDataFields
.
image
]
return
tf
.
expand_dims
(
image
,
axis
=
0
)
Returns:
def
_image_tensor_input_placeholder
():
a tuple of placeholder and input nodes that output decoded images.
return
tf
.
placeholder
(
dtype
=
tf
.
uint8
,
"""
shape
=
(
1
,
None
,
None
,
3
),
batch_tf_example_placeholder
=
tf
.
placeholder
(
name
=
'image_tensor'
)
tf
.
string
,
shape
=
[
None
],
name
=
'tf_example'
)
def
decode
(
tf_example_string_tensor
):
tensor_dict
=
tf_example_decoder
.
TfExampleDecoder
().
decode
(
tf_example_string_tensor
)
image_tensor
=
tensor_dict
[
fields
.
InputDataFields
.
image
]
return
image_tensor
return
(
batch_tf_example_placeholder
,
tf
.
map_fn
(
decode
,
elems
=
batch_tf_example_placeholder
,
dtype
=
tf
.
uint8
,
parallel_iterations
=
32
,
back_prop
=
False
))
def
_encoded_image_string_tensor_input_placeholder
():
def
_encoded_image_string_tensor_input_placeholder
():
image_str
=
tf
.
placeholder
(
dtype
=
tf
.
string
,
"""Returns input that accepts a batch of PNG or JPEG strings.
shape
=
[],
name
=
'encoded_image_string_tensor'
)
Returns:
image_tensor
=
tf
.
image
.
decode_image
(
image_str
,
channels
=
3
)
a tuple of placeholder and input nodes that output decoded images.
image_tensor
.
set_shape
((
None
,
None
,
3
))
"""
return
tf
.
expand_dims
(
image_tensor
,
axis
=
0
)
batch_image_str_placeholder
=
tf
.
placeholder
(
dtype
=
tf
.
string
,
shape
=
[
None
],
name
=
'encoded_image_string_tensor'
)
def
decode
(
encoded_image_string_tensor
):
image_tensor
=
tf
.
image
.
decode_image
(
encoded_image_string_tensor
,
channels
=
3
)
image_tensor
.
set_shape
((
None
,
None
,
3
))
return
image_tensor
return
(
batch_image_str_placeholder
,
tf
.
map_fn
(
decode
,
elems
=
batch_image_str_placeholder
,
dtype
=
tf
.
uint8
,
parallel_iterations
=
32
,
back_prop
=
False
))
input_placeholder_fn_map
=
{
input_placeholder_fn_map
=
{
...
@@ -151,7 +173,8 @@ input_placeholder_fn_map = {
...
@@ -151,7 +173,8 @@ input_placeholder_fn_map = {
}
}
def
_add_output_tensor_nodes
(
postprocessed_tensors
):
def
_add_output_tensor_nodes
(
postprocessed_tensors
,
output_collection_name
=
'inference_op'
):
"""Adds output nodes for detection boxes and scores.
"""Adds output nodes for detection boxes and scores.
Adds the following nodes for output tensors -
Adds the following nodes for output tensors -
...
@@ -174,6 +197,7 @@ def _add_output_tensor_nodes(postprocessed_tensors):
...
@@ -174,6 +197,7 @@ def _add_output_tensor_nodes(postprocessed_tensors):
'detection_masks': [batch, max_detections, mask_height, mask_width]
'detection_masks': [batch, max_detections, mask_height, mask_width]
(optional).
(optional).
'num_detections': [batch]
'num_detections': [batch]
output_collection_name: Name of collection to add output tensors to.
Returns:
Returns:
A tensor dict containing the added output tensor nodes.
A tensor dict containing the added output tensor nodes.
...
@@ -191,53 +215,29 @@ def _add_output_tensor_nodes(postprocessed_tensors):
...
@@ -191,53 +215,29 @@ def _add_output_tensor_nodes(postprocessed_tensors):
outputs
[
'num_detections'
]
=
tf
.
identity
(
num_detections
,
name
=
'num_detections'
)
outputs
[
'num_detections'
]
=
tf
.
identity
(
num_detections
,
name
=
'num_detections'
)
if
masks
is
not
None
:
if
masks
is
not
None
:
outputs
[
'detection_masks'
]
=
tf
.
identity
(
masks
,
name
=
'detection_masks'
)
outputs
[
'detection_masks'
]
=
tf
.
identity
(
masks
,
name
=
'detection_masks'
)
for
output_key
in
outputs
:
tf
.
add_to_collection
(
output_collection_name
,
outputs
[
output_key
])
if
masks
is
not
None
:
tf
.
add_to_collection
(
output_collection_name
,
outputs
[
'detection_masks'
])
return
outputs
return
outputs
def
_write_inference_graph
(
inference_graph_path
,
def
_write_frozen_graph
(
frozen_graph_path
,
frozen_graph_def
):
checkpoint_path
=
None
,
"""Writes frozen graph to disk.
use_moving_averages
=
False
,
output_node_names
=
(
'num_detections,detection_scores,'
'detection_boxes,detection_classes'
)):
"""Writes inference graph to disk with the option to bake in weights.
If checkpoint_path is not None bakes the weights into the graph thereby
eliminating the need of checkpoint files during inference. If the model
was trained with moving averages, setting use_moving_averages to true
restores the moving averages, otherwise the original set of variables
is restored.
Args:
Args:
inference_graph_path: Path to write inference graph.
frozen_graph_path: Path to write inference graph.
checkpoint_path: Optional path to the checkpoint file.
frozen_graph_def: tf.GraphDef holding frozen graph.
use_moving_averages: Whether to export the original or the moving averages
of the trainable variables from the checkpoint.
output_node_names: Output tensor names, defaults are: num_detections,
detection_scores, detection_boxes, detection_classes.
"""
"""
inference_graph_def
=
tf
.
get_default_graph
().
as_graph_def
()
with
gfile
.
GFile
(
frozen_graph_path
,
'wb'
)
as
f
:
if
checkpoint_path
:
f
.
write
(
frozen_graph_def
.
SerializeToString
())
output_graph_def
=
get_frozen_graph_def
(
logging
.
info
(
'%d ops in the final graph.'
,
len
(
frozen_graph_def
.
node
))
inference_graph_def
=
inference_graph_def
,
use_moving_averages
=
use_moving_averages
,
input_checkpoint
=
checkpoint_path
,
def
_write_saved_model
(
saved_model_path
,
output_node_names
=
output_node_names
,
frozen_graph_def
,
)
inputs
,
outputs
):
with
gfile
.
GFile
(
inference_graph_path
,
'wb'
)
as
f
:
f
.
write
(
output_graph_def
.
SerializeToString
())
logging
.
info
(
'%d ops in the final graph.'
,
len
(
output_graph_def
.
node
))
return
tf
.
train
.
write_graph
(
inference_graph_def
,
os
.
path
.
dirname
(
inference_graph_path
),
os
.
path
.
basename
(
inference_graph_path
),
as_text
=
False
)
def
_write_saved_model
(
inference_graph_path
,
inputs
,
outputs
,
checkpoint_path
=
None
,
use_moving_averages
=
False
):
"""Writes SavedModel to disk.
"""Writes SavedModel to disk.
If checkpoint_path is not None bakes the weights into the graph thereby
If checkpoint_path is not None bakes the weights into the graph thereby
...
@@ -247,30 +247,17 @@ def _write_saved_model(inference_graph_path, inputs, outputs,
...
@@ -247,30 +247,17 @@ def _write_saved_model(inference_graph_path, inputs, outputs,
is restored.
is restored.
Args:
Args:
inference_graph_path: Path to write inference graph.
saved_model_path: Path to write SavedModel.
frozen_graph_def: tf.GraphDef holding frozen graph.
inputs: The input image tensor to use for detection.
inputs: The input image tensor to use for detection.
outputs: A tensor dictionary containing the outputs of a DetectionModel.
outputs: A tensor dictionary containing the outputs of a DetectionModel.
checkpoint_path: Optional path to the checkpoint file.
use_moving_averages: Whether to export the original or the moving averages
of the trainable variables from the checkpoint.
"""
"""
inference_graph_def
=
tf
.
get_default_graph
().
as_graph_def
()
checkpoint_graph_def
=
None
if
checkpoint_path
:
output_node_names
=
','
.
join
(
outputs
.
keys
())
checkpoint_graph_def
=
get_frozen_graph_def
(
inference_graph_def
=
inference_graph_def
,
use_moving_averages
=
use_moving_averages
,
input_checkpoint
=
checkpoint_path
,
output_node_names
=
output_node_names
)
with
tf
.
Graph
().
as_default
():
with
tf
.
Graph
().
as_default
():
with
session
.
Session
()
as
sess
:
with
session
.
Session
()
as
sess
:
tf
.
import_graph_def
(
checkpoint
_graph_def
)
tf
.
import_graph_def
(
frozen
_graph_def
,
name
=
''
)
builder
=
tf
.
saved_model
.
builder
.
SavedModelBuilder
(
inference_graph
_path
)
builder
=
tf
.
saved_model
.
builder
.
SavedModelBuilder
(
saved_model
_path
)
tensor_info_inputs
=
{
tensor_info_inputs
=
{
'inputs'
:
tf
.
saved_model
.
utils
.
build_tensor_info
(
inputs
)}
'inputs'
:
tf
.
saved_model
.
utils
.
build_tensor_info
(
inputs
)}
...
@@ -294,46 +281,96 @@ def _write_saved_model(inference_graph_path, inputs, outputs,
...
@@ -294,46 +281,96 @@ def _write_saved_model(inference_graph_path, inputs, outputs,
builder
.
save
()
builder
.
save
()
def
_write_graph_and_checkpoint
(
inference_graph_def
,
model_path
,
input_saver_def
,
trained_checkpoint_prefix
):
for
node
in
inference_graph_def
.
node
:
node
.
device
=
''
with
tf
.
Graph
().
as_default
():
tf
.
import_graph_def
(
inference_graph_def
,
name
=
''
)
with
session
.
Session
()
as
sess
:
saver
=
saver_lib
.
Saver
(
saver_def
=
input_saver_def
,
save_relative_paths
=
True
)
saver
.
restore
(
sess
,
trained_checkpoint_prefix
)
saver
.
save
(
sess
,
model_path
)
def
_export_inference_graph
(
input_type
,
def
_export_inference_graph
(
input_type
,
detection_model
,
detection_model
,
use_moving_averages
,
use_moving_averages
,
checkpoint_path
,
trained_checkpoint_prefix
,
inference_graph_path
,
output_directory
,
export_as_saved_model
=
False
):
optimize_graph
=
False
,
output_collection_name
=
'inference_op'
):
"""Export helper."""
"""Export helper."""
tf
.
gfile
.
MakeDirs
(
output_directory
)
frozen_graph_path
=
os
.
path
.
join
(
output_directory
,
'frozen_inference_graph.pb'
)
saved_model_path
=
os
.
path
.
join
(
output_directory
,
'saved_model'
)
model_path
=
os
.
path
.
join
(
output_directory
,
'model.ckpt'
)
if
input_type
not
in
input_placeholder_fn_map
:
if
input_type
not
in
input_placeholder_fn_map
:
raise
ValueError
(
'Unknown input type: {}'
.
format
(
input_type
))
raise
ValueError
(
'Unknown input type: {}'
.
format
(
input_type
))
inputs
=
tf
.
to_float
(
input_placeholder_fn_map
[
input_type
]())
placeholder_tensor
,
input_tensors
=
input_placeholder_fn_map
[
input_type
]()
inputs
=
tf
.
to_float
(
input_tensors
)
preprocessed_inputs
=
detection_model
.
preprocess
(
inputs
)
preprocessed_inputs
=
detection_model
.
preprocess
(
inputs
)
output_tensors
=
detection_model
.
predict
(
preprocessed_inputs
)
output_tensors
=
detection_model
.
predict
(
preprocessed_inputs
)
postprocessed_tensors
=
detection_model
.
postprocess
(
output_tensors
)
postprocessed_tensors
=
detection_model
.
postprocess
(
output_tensors
)
outputs
=
_add_output_tensor_nodes
(
postprocessed_tensors
)
outputs
=
_add_output_tensor_nodes
(
postprocessed_tensors
,
out_node_names
=
list
(
outputs
.
keys
())
output_collection_name
)
if
export_as_saved_model
:
_write_saved_model
(
inference_graph_path
,
inputs
,
outputs
,
checkpoint_path
,
saver
=
None
use_moving_averages
)
if
use_moving_averages
:
variable_averages
=
tf
.
train
.
ExponentialMovingAverage
(
0.0
)
variables_to_restore
=
variable_averages
.
variables_to_restore
()
saver
=
tf
.
train
.
Saver
(
variables_to_restore
)
else
:
else
:
_write_inference_graph
(
inference_graph_path
,
checkpoint_path
,
saver
=
tf
.
train
.
Saver
()
use_moving_averages
,
input_saver_def
=
saver
.
as_saver_def
()
output_node_names
=
','
.
join
(
out_node_names
))
_write_graph_and_checkpoint
(
inference_graph_def
=
tf
.
get_default_graph
().
as_graph_def
(),
model_path
=
model_path
,
input_saver_def
=
input_saver_def
,
trained_checkpoint_prefix
=
trained_checkpoint_prefix
)
frozen_graph_def
=
freeze_graph_with_def_protos
(
input_graph_def
=
tf
.
get_default_graph
().
as_graph_def
(),
input_saver_def
=
input_saver_def
,
input_checkpoint
=
trained_checkpoint_prefix
,
output_node_names
=
','
.
join
(
outputs
.
keys
()),
restore_op_name
=
'save/restore_all'
,
filename_tensor_name
=
'save/Const:0'
,
clear_devices
=
True
,
optimize_graph
=
optimize_graph
,
initializer_nodes
=
''
)
_write_frozen_graph
(
frozen_graph_path
,
frozen_graph_def
)
_write_saved_model
(
saved_model_path
,
frozen_graph_def
,
placeholder_tensor
,
outputs
)
def
export_inference_graph
(
input_type
,
pipeline_config
,
checkpoint_path
,
def
export_inference_graph
(
input_type
,
inference_graph_path
,
export_as_saved_model
=
False
):
pipeline_config
,
trained_checkpoint_prefix
,
output_directory
,
optimize_graph
=
False
,
output_collection_name
=
'inference_op'
):
"""Exports inference graph for the model specified in the pipeline config.
"""Exports inference graph for the model specified in the pipeline config.
Args:
Args:
input_type: Type of input for the graph. Can be one of [`image_tensor`,
input_type: Type of input for the graph. Can be one of [`image_tensor`,
`tf_example`].
`tf_example`].
pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
checkpoint_path: Path to the checkpoint file to freeze.
trained_checkpoint_prefix: Path to the trained checkpoint file.
inference_graph_path: Path to write inference graph to.
output_directory: Path to write outputs.
export_as_saved_model: If the model should be exported as a SavedModel. If
optimize_graph: Whether to optimize graph using Grappler.
false, it is saved as an inference graph.
output_collection_name: Name of collection to add output tensors to.
If None, does not add output tensors to a collection.
"""
"""
detection_model
=
model_builder
.
build
(
pipeline_config
.
model
,
detection_model
=
model_builder
.
build
(
pipeline_config
.
model
,
is_training
=
False
)
is_training
=
False
)
_export_inference_graph
(
input_type
,
detection_model
,
_export_inference_graph
(
input_type
,
detection_model
,
pipeline_config
.
eval_config
.
use_moving_averages
,
pipeline_config
.
eval_config
.
use_moving_averages
,
checkpoint_p
ath
,
inference_graph_path
,
trained_
checkpoint_p
refix
,
output_directory
,
export_as_saved_model
)
optimize_graph
,
output_collection_name
)
object_detection/exporter_test.py
View file @
dff0f0c1
...
@@ -43,18 +43,22 @@ class FakeModel(model.DetectionModel):
...
@@ -43,18 +43,22 @@ class FakeModel(model.DetectionModel):
def
postprocess
(
self
,
prediction_dict
):
def
postprocess
(
self
,
prediction_dict
):
with
tf
.
control_dependencies
(
prediction_dict
.
values
()):
with
tf
.
control_dependencies
(
prediction_dict
.
values
()):
postprocessed_tensors
=
{
postprocessed_tensors
=
{
'detection_boxes'
:
tf
.
constant
([[
0.0
,
0.0
,
0.5
,
0.5
],
'detection_boxes'
:
tf
.
constant
([[[
0.0
,
0.0
,
0.5
,
0.5
],
[
0.5
,
0.5
,
0.8
,
0.8
]],
tf
.
float32
),
[
0.5
,
0.5
,
0.8
,
0.8
]],
'detection_scores'
:
tf
.
constant
([[
0.7
,
0.6
]],
tf
.
float32
),
[[
0.5
,
0.5
,
1.0
,
1.0
],
'detection_classes'
:
tf
.
constant
([[
0
,
1
]],
tf
.
float32
),
[
0.0
,
0.0
,
0.0
,
0.0
]]],
tf
.
float32
),
'num_detections'
:
tf
.
constant
([
2
],
tf
.
float32
)
'detection_scores'
:
tf
.
constant
([[
0.7
,
0.6
],
[
0.9
,
0.0
]],
tf
.
float32
),
'detection_classes'
:
tf
.
constant
([[
0
,
1
],
[
1
,
0
]],
tf
.
float32
),
'num_detections'
:
tf
.
constant
([
2
,
1
],
tf
.
float32
)
}
}
if
self
.
_add_detection_masks
:
if
self
.
_add_detection_masks
:
postprocessed_tensors
[
'detection_masks'
]
=
tf
.
constant
(
postprocessed_tensors
[
'detection_masks'
]
=
tf
.
constant
(
np
.
arange
(
32
).
reshape
([
2
,
4
,
4
]),
tf
.
float32
)
np
.
arange
(
64
).
reshape
([
2
,
2
,
4
,
4
]),
tf
.
float32
)
return
postprocessed_tensors
return
postprocessed_tensors
def
restore_
fn
(
self
,
checkpoint_path
,
from_detection_checkpoint
):
def
restore_
map
(
self
,
checkpoint_path
,
from_detection_checkpoint
):
pass
pass
def
loss
(
self
,
prediction_dict
):
def
loss
(
self
,
prediction_dict
):
...
@@ -69,7 +73,7 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -69,7 +73,7 @@ class ExportInferenceGraphTest(tf.test.TestCase):
with
g
.
as_default
():
with
g
.
as_default
():
mock_model
=
FakeModel
()
mock_model
=
FakeModel
()
preprocessed_inputs
=
mock_model
.
preprocess
(
preprocessed_inputs
=
mock_model
.
preprocess
(
tf
.
ones
([
1
,
3
,
4
,
3
],
tf
.
float32
))
tf
.
placeholder
(
tf
.
float32
,
shape
=
[
None
,
None
,
None
,
3
]
))
predictions
=
mock_model
.
predict
(
preprocessed_inputs
)
predictions
=
mock_model
.
predict
(
preprocessed_inputs
)
mock_model
.
postprocess
(
predictions
)
mock_model
.
postprocess
(
predictions
)
if
use_moving_averages
:
if
use_moving_averages
:
...
@@ -103,71 +107,62 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -103,71 +107,62 @@ class ExportInferenceGraphTest(tf.test.TestCase):
return
example
return
example
def
test_export_graph_with_image_tensor_input
(
self
):
def
test_export_graph_with_image_tensor_input
(
self
):
tmp_dir
=
self
.
get_temp_dir
()
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
use_moving_averages
=
False
)
with
mock
.
patch
.
object
(
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
()
mock_builder
.
return_value
=
FakeModel
()
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
'exported_graph.pbtxt'
)
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
pipeline_config
.
eval_config
.
use_moving_averages
=
False
pipeline_config
.
eval_config
.
use_moving_averages
=
False
exporter
.
export_inference_graph
(
exporter
.
export_inference_graph
(
input_type
=
'image_tensor'
,
input_type
=
'image_tensor'
,
pipeline_config
=
pipeline_config
,
pipeline_config
=
pipeline_config
,
checkpoint_p
ath
=
None
,
trained_
checkpoint_p
refix
=
trained_checkpoint_prefix
,
inference_graph_path
=
inference_graph_path
)
output_directory
=
output_directory
)
def
test_export_graph_with_tf_example_input
(
self
):
def
test_export_graph_with_tf_example_input
(
self
):
tmp_dir
=
self
.
get_temp_dir
()
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
use_moving_averages
=
False
)
with
mock
.
patch
.
object
(
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
()
mock_builder
.
return_value
=
FakeModel
()
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
'exported_graph.pbtxt'
)
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
pipeline_config
.
eval_config
.
use_moving_averages
=
False
pipeline_config
.
eval_config
.
use_moving_averages
=
False
exporter
.
export_inference_graph
(
exporter
.
export_inference_graph
(
input_type
=
'tf_example'
,
input_type
=
'tf_example'
,
pipeline_config
=
pipeline_config
,
pipeline_config
=
pipeline_config
,
checkpoint_p
ath
=
None
,
trained_
checkpoint_p
refix
=
trained_checkpoint_prefix
,
inference_graph_path
=
inference_graph_path
)
output_directory
=
output_directory
)
def
test_export_graph_with_encoded_image_string_input
(
self
):
def
test_export_graph_with_encoded_image_string_input
(
self
):
with
mock
.
patch
.
object
(
tmp_dir
=
self
.
get_temp_dir
()
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
mock_builder
.
return_value
=
FakeModel
()
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
'exported_graph.pbtxt'
)
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
pipeline_config
.
eval_config
.
use_moving_averages
=
False
exporter
.
export_inference_graph
(
input_type
=
'encoded_image_string_tensor'
,
pipeline_config
=
pipeline_config
,
checkpoint_path
=
None
,
inference_graph_path
=
inference_graph_path
)
def
test_export_frozen_graph
(
self
):
checkpoint_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
'model-ckpt'
)
self
.
_save_checkpoint_from_mock_model
(
checkpoint_path
,
use_moving_averages
=
False
)
use_moving_averages
=
False
)
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
'exported_graph.pb'
)
with
mock
.
patch
.
object
(
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
()
mock_builder
.
return_value
=
FakeModel
()
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
pipeline_config
.
eval_config
.
use_moving_averages
=
False
pipeline_config
.
eval_config
.
use_moving_averages
=
False
exporter
.
export_inference_graph
(
exporter
.
export_inference_graph
(
input_type
=
'
image
_tensor'
,
input_type
=
'
encoded_image_string
_tensor'
,
pipeline_config
=
pipeline_config
,
pipeline_config
=
pipeline_config
,
checkpoint_p
ath
=
checkpoint_p
ath
,
trained_
checkpoint_p
refix
=
trained_
checkpoint_p
refix
,
inference_graph_path
=
inference_graph_path
)
output_directory
=
output_directory
)
def
test_export_frozen_graph_with_moving_averages
(
self
):
def
test_export_graph_with_moving_averages
(
self
):
checkpoint_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
'model-ckpt'
)
tmp_dir
=
self
.
get_temp_dir
()
self
.
_save_checkpoint_from_mock_model
(
checkpoint_path
,
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
use_moving_averages
=
True
)
use_moving_averages
=
True
)
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
'exported_graph.pb'
)
with
mock
.
patch
.
object
(
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
()
mock_builder
.
return_value
=
FakeModel
()
...
@@ -176,15 +171,17 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -176,15 +171,17 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter
.
export_inference_graph
(
exporter
.
export_inference_graph
(
input_type
=
'image_tensor'
,
input_type
=
'image_tensor'
,
pipeline_config
=
pipeline_config
,
pipeline_config
=
pipeline_config
,
checkpoint_p
ath
=
checkpoint_p
ath
,
trained_
checkpoint_p
refix
=
trained_
checkpoint_p
refix
,
inference_graph_path
=
inference_graph_path
)
output_directory
=
output_directory
)
def
test_export_model_with_all_output_nodes
(
self
):
def
test_export_model_with_all_output_nodes
(
self
):
checkpoint_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
'model-ckpt'
)
tmp_dir
=
self
.
get_temp_dir
()
self
.
_save_checkpoint_from_mock_model
(
checkpoint_path
,
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
use_moving_averages
=
False
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
use_moving_averages
=
True
)
'exported_graph.pb'
)
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
inference_graph_path
=
os
.
path
.
join
(
output_directory
,
'frozen_inference_graph.pb'
)
with
mock
.
patch
.
object
(
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
True
)
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
True
)
...
@@ -192,8 +189,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -192,8 +189,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter
.
export_inference_graph
(
exporter
.
export_inference_graph
(
input_type
=
'image_tensor'
,
input_type
=
'image_tensor'
,
pipeline_config
=
pipeline_config
,
pipeline_config
=
pipeline_config
,
checkpoint_p
ath
=
checkpoint_p
ath
,
trained_
checkpoint_p
refix
=
trained_
checkpoint_p
refix
,
inference_graph_path
=
inference_graph_path
)
output_directory
=
output_directory
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
with
self
.
test_session
(
graph
=
inference_graph
):
with
self
.
test_session
(
graph
=
inference_graph
):
inference_graph
.
get_tensor_by_name
(
'image_tensor:0'
)
inference_graph
.
get_tensor_by_name
(
'image_tensor:0'
)
...
@@ -204,11 +201,13 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -204,11 +201,13 @@ class ExportInferenceGraphTest(tf.test.TestCase):
inference_graph
.
get_tensor_by_name
(
'num_detections:0'
)
inference_graph
.
get_tensor_by_name
(
'num_detections:0'
)
def
test_export_model_with_detection_only_nodes
(
self
):
def
test_export_model_with_detection_only_nodes
(
self
):
checkpoint_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
'model-ckpt'
)
tmp_dir
=
self
.
get_temp_dir
()
self
.
_save_checkpoint_from_mock_model
(
checkpoint_path
,
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
use_moving_averages
=
False
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
use_moving_averages
=
True
)
'exported_graph.pb'
)
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
inference_graph_path
=
os
.
path
.
join
(
output_directory
,
'frozen_inference_graph.pb'
)
with
mock
.
patch
.
object
(
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
False
)
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
False
)
...
@@ -216,8 +215,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -216,8 +215,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter
.
export_inference_graph
(
exporter
.
export_inference_graph
(
input_type
=
'image_tensor'
,
input_type
=
'image_tensor'
,
pipeline_config
=
pipeline_config
,
pipeline_config
=
pipeline_config
,
checkpoint_p
ath
=
checkpoint_p
ath
,
trained_
checkpoint_p
refix
=
trained_
checkpoint_p
refix
,
inference_graph_path
=
inference_graph_path
)
output_directory
=
output_directory
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
with
self
.
test_session
(
graph
=
inference_graph
):
with
self
.
test_session
(
graph
=
inference_graph
):
inference_graph
.
get_tensor_by_name
(
'image_tensor:0'
)
inference_graph
.
get_tensor_by_name
(
'image_tensor:0'
)
...
@@ -229,11 +228,13 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -229,11 +228,13 @@ class ExportInferenceGraphTest(tf.test.TestCase):
inference_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
inference_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
def
test_export_and_run_inference_with_image_tensor
(
self
):
def
test_export_and_run_inference_with_image_tensor
(
self
):
checkpoint_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
'model-ckpt'
)
tmp_dir
=
self
.
get_temp_dir
()
self
.
_save_checkpoint_from_mock_model
(
checkpoint_path
,
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
use_moving_averages
=
False
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
use_moving_averages
=
True
)
'exported_graph.pb'
)
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
inference_graph_path
=
os
.
path
.
join
(
output_directory
,
'frozen_inference_graph.pb'
)
with
mock
.
patch
.
object
(
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
True
)
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
True
)
...
@@ -242,8 +243,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -242,8 +243,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter
.
export_inference_graph
(
exporter
.
export_inference_graph
(
input_type
=
'image_tensor'
,
input_type
=
'image_tensor'
,
pipeline_config
=
pipeline_config
,
pipeline_config
=
pipeline_config
,
checkpoint_p
ath
=
checkpoint_p
ath
,
trained_
checkpoint_p
refix
=
trained_
checkpoint_p
refix
,
inference_graph_path
=
inference_graph_path
)
output_directory
=
output_directory
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
with
self
.
test_session
(
graph
=
inference_graph
)
as
sess
:
with
self
.
test_session
(
graph
=
inference_graph
)
as
sess
:
...
@@ -253,15 +254,19 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -253,15 +254,19 @@ class ExportInferenceGraphTest(tf.test.TestCase):
classes
=
inference_graph
.
get_tensor_by_name
(
'detection_classes:0'
)
classes
=
inference_graph
.
get_tensor_by_name
(
'detection_classes:0'
)
masks
=
inference_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
masks
=
inference_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
num_detections
=
inference_graph
.
get_tensor_by_name
(
'num_detections:0'
)
num_detections
=
inference_graph
.
get_tensor_by_name
(
'num_detections:0'
)
(
boxes
,
scores
,
classes
,
masks
,
num_detections
)
=
sess
.
run
(
(
boxes
_np
,
scores
_np
,
classes
_np
,
masks
_np
,
num_detections
_np
)
=
sess
.
run
(
[
boxes
,
scores
,
classes
,
masks
,
num_detections
],
[
boxes
,
scores
,
classes
,
masks
,
num_detections
],
feed_dict
=
{
image_tensor
:
np
.
ones
((
1
,
4
,
4
,
3
)).
astype
(
np
.
uint8
)})
feed_dict
=
{
image_tensor
:
np
.
ones
((
2
,
4
,
4
,
3
)).
astype
(
np
.
uint8
)})
self
.
assertAllClose
(
boxes
,
[[
0.0
,
0.0
,
0.5
,
0.5
],
self
.
assertAllClose
(
boxes_np
,
[[[
0.0
,
0.0
,
0.5
,
0.5
],
[
0.5
,
0.5
,
0.8
,
0.8
]])
[
0.5
,
0.5
,
0.8
,
0.8
]],
self
.
assertAllClose
(
scores
,
[[
0.7
,
0.6
]])
[[
0.5
,
0.5
,
1.0
,
1.0
],
self
.
assertAllClose
(
classes
,
[[
1
,
2
]])
[
0.0
,
0.0
,
0.0
,
0.0
]]])
self
.
assertAllClose
(
masks
,
np
.
arange
(
32
).
reshape
([
2
,
4
,
4
]))
self
.
assertAllClose
(
scores_np
,
[[
0.7
,
0.6
],
self
.
assertAllClose
(
num_detections
,
[
2
])
[
0.9
,
0.0
]])
self
.
assertAllClose
(
classes_np
,
[[
1
,
2
],
[
2
,
1
]])
self
.
assertAllClose
(
masks_np
,
np
.
arange
(
64
).
reshape
([
2
,
2
,
4
,
4
]))
self
.
assertAllClose
(
num_detections_np
,
[
2
,
1
])
def
_create_encoded_image_string
(
self
,
image_array_np
,
encoding_format
):
def
_create_encoded_image_string
(
self
,
image_array_np
,
encoding_format
):
od_graph
=
tf
.
Graph
()
od_graph
=
tf
.
Graph
()
...
@@ -276,11 +281,13 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -276,11 +281,13 @@ class ExportInferenceGraphTest(tf.test.TestCase):
return
encoded_string
.
eval
()
return
encoded_string
.
eval
()
def
test_export_and_run_inference_with_encoded_image_string_tensor
(
self
):
def
test_export_and_run_inference_with_encoded_image_string_tensor
(
self
):
checkpoint_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
'model-ckpt'
)
tmp_dir
=
self
.
get_temp_dir
()
self
.
_save_checkpoint_from_mock_model
(
checkpoint_path
,
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
use_moving_averages
=
False
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
use_moving_averages
=
True
)
'exported_graph.pb'
)
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
inference_graph_path
=
os
.
path
.
join
(
output_directory
,
'frozen_inference_graph.pb'
)
with
mock
.
patch
.
object
(
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
True
)
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
True
)
...
@@ -289,8 +296,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -289,8 +296,8 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter
.
export_inference_graph
(
exporter
.
export_inference_graph
(
input_type
=
'encoded_image_string_tensor'
,
input_type
=
'encoded_image_string_tensor'
,
pipeline_config
=
pipeline_config
,
pipeline_config
=
pipeline_config
,
checkpoint_p
ath
=
checkpoint_p
ath
,
trained_
checkpoint_p
refix
=
trained_
checkpoint_p
refix
,
inference_graph_path
=
inference_graph_path
)
output_directory
=
output_directory
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
jpg_image_str
=
self
.
_create_encoded_image_string
(
jpg_image_str
=
self
.
_create_encoded_image_string
(
...
@@ -306,23 +313,69 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -306,23 +313,69 @@ class ExportInferenceGraphTest(tf.test.TestCase):
masks
=
inference_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
masks
=
inference_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
num_detections
=
inference_graph
.
get_tensor_by_name
(
'num_detections:0'
)
num_detections
=
inference_graph
.
get_tensor_by_name
(
'num_detections:0'
)
for
image_str
in
[
jpg_image_str
,
png_image_str
]:
for
image_str
in
[
jpg_image_str
,
png_image_str
]:
image_str_batch_np
=
np
.
hstack
([
image_str
]
*
2
)
(
boxes_np
,
scores_np
,
classes_np
,
masks_np
,
(
boxes_np
,
scores_np
,
classes_np
,
masks_np
,
num_detections_np
)
=
sess
.
run
(
num_detections_np
)
=
sess
.
run
(
[
boxes
,
scores
,
classes
,
masks
,
num_detections
],
[
boxes
,
scores
,
classes
,
masks
,
num_detections
],
feed_dict
=
{
image_str_tensor
:
image_str
})
feed_dict
=
{
image_str_tensor
:
image_str_batch_np
})
self
.
assertAllClose
(
boxes_np
,
[[
0.0
,
0.0
,
0.5
,
0.5
],
self
.
assertAllClose
(
boxes_np
,
[[[
0.0
,
0.0
,
0.5
,
0.5
],
[
0.5
,
0.5
,
0.8
,
0.8
]])
[
0.5
,
0.5
,
0.8
,
0.8
]],
self
.
assertAllClose
(
scores_np
,
[[
0.7
,
0.6
]])
[[
0.5
,
0.5
,
1.0
,
1.0
],
self
.
assertAllClose
(
classes_np
,
[[
1
,
2
]])
[
0.0
,
0.0
,
0.0
,
0.0
]]])
self
.
assertAllClose
(
masks_np
,
np
.
arange
(
32
).
reshape
([
2
,
4
,
4
]))
self
.
assertAllClose
(
scores_np
,
[[
0.7
,
0.6
],
self
.
assertAllClose
(
num_detections_np
,
[
2
])
[
0.9
,
0.0
]])
self
.
assertAllClose
(
classes_np
,
[[
1
,
2
],
[
2
,
1
]])
self
.
assertAllClose
(
masks_np
,
np
.
arange
(
64
).
reshape
([
2
,
2
,
4
,
4
]))
self
.
assertAllClose
(
num_detections_np
,
[
2
,
1
])
def
test_raise_runtime_error_on_images_with_different_sizes
(
self
):
tmp_dir
=
self
.
get_temp_dir
()
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
use_moving_averages
=
True
)
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
inference_graph_path
=
os
.
path
.
join
(
output_directory
,
'frozen_inference_graph.pb'
)
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
True
)
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
pipeline_config
.
eval_config
.
use_moving_averages
=
False
exporter
.
export_inference_graph
(
input_type
=
'encoded_image_string_tensor'
,
pipeline_config
=
pipeline_config
,
trained_checkpoint_prefix
=
trained_checkpoint_prefix
,
output_directory
=
output_directory
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
large_image
=
self
.
_create_encoded_image_string
(
np
.
ones
((
4
,
4
,
3
)).
astype
(
np
.
uint8
),
'jpg'
)
small_image
=
self
.
_create_encoded_image_string
(
np
.
ones
((
2
,
2
,
3
)).
astype
(
np
.
uint8
),
'jpg'
)
image_str_batch_np
=
np
.
hstack
([
large_image
,
small_image
])
with
self
.
test_session
(
graph
=
inference_graph
)
as
sess
:
image_str_tensor
=
inference_graph
.
get_tensor_by_name
(
'encoded_image_string_tensor:0'
)
boxes
=
inference_graph
.
get_tensor_by_name
(
'detection_boxes:0'
)
scores
=
inference_graph
.
get_tensor_by_name
(
'detection_scores:0'
)
classes
=
inference_graph
.
get_tensor_by_name
(
'detection_classes:0'
)
masks
=
inference_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
num_detections
=
inference_graph
.
get_tensor_by_name
(
'num_detections:0'
)
with
self
.
assertRaisesRegexp
(
tf
.
errors
.
InvalidArgumentError
,
'^TensorArray has inconsistent shapes.'
):
sess
.
run
([
boxes
,
scores
,
classes
,
masks
,
num_detections
],
feed_dict
=
{
image_str_tensor
:
image_str_batch_np
})
def
test_export_and_run_inference_with_tf_example
(
self
):
def
test_export_and_run_inference_with_tf_example
(
self
):
checkpoint_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
'model-ckpt'
)
tmp_dir
=
self
.
get_temp_dir
()
self
.
_save_checkpoint_from_mock_model
(
checkpoint_path
,
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
use_moving_averages
=
False
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
use_moving_averages
=
True
)
'exported_graph.pb'
)
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
inference_graph_path
=
os
.
path
.
join
(
output_directory
,
'frozen_inference_graph.pb'
)
with
mock
.
patch
.
object
(
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
True
)
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
True
)
...
@@ -331,10 +384,12 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -331,10 +384,12 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter
.
export_inference_graph
(
exporter
.
export_inference_graph
(
input_type
=
'tf_example'
,
input_type
=
'tf_example'
,
pipeline_config
=
pipeline_config
,
pipeline_config
=
pipeline_config
,
checkpoint_p
ath
=
checkpoint_p
ath
,
trained_
checkpoint_p
refix
=
trained_
checkpoint_p
refix
,
inference_graph_path
=
inference_graph_path
)
output_directory
=
output_directory
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
inference_graph
=
self
.
_load_inference_graph
(
inference_graph_path
)
tf_example_np
=
np
.
expand_dims
(
self
.
_create_tf_example
(
np
.
ones
((
4
,
4
,
3
)).
astype
(
np
.
uint8
)),
axis
=
0
)
with
self
.
test_session
(
graph
=
inference_graph
)
as
sess
:
with
self
.
test_session
(
graph
=
inference_graph
)
as
sess
:
tf_example
=
inference_graph
.
get_tensor_by_name
(
'tf_example:0'
)
tf_example
=
inference_graph
.
get_tensor_by_name
(
'tf_example:0'
)
boxes
=
inference_graph
.
get_tensor_by_name
(
'detection_boxes:0'
)
boxes
=
inference_graph
.
get_tensor_by_name
(
'detection_boxes:0'
)
...
@@ -342,23 +397,27 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -342,23 +397,27 @@ class ExportInferenceGraphTest(tf.test.TestCase):
classes
=
inference_graph
.
get_tensor_by_name
(
'detection_classes:0'
)
classes
=
inference_graph
.
get_tensor_by_name
(
'detection_classes:0'
)
masks
=
inference_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
masks
=
inference_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
num_detections
=
inference_graph
.
get_tensor_by_name
(
'num_detections:0'
)
num_detections
=
inference_graph
.
get_tensor_by_name
(
'num_detections:0'
)
(
boxes
,
scores
,
classes
,
masks
,
num_detections
)
=
sess
.
run
(
(
boxes
_np
,
scores
_np
,
classes
_np
,
masks
_np
,
num_detections
_np
)
=
sess
.
run
(
[
boxes
,
scores
,
classes
,
masks
,
num_detections
],
[
boxes
,
scores
,
classes
,
masks
,
num_detections
],
feed_dict
=
{
tf_example
:
self
.
_create_tf_example
(
feed_dict
=
{
tf_example
:
tf_example_np
})
np
.
ones
((
4
,
4
,
3
)).
astype
(
np
.
uint8
))})
self
.
assertAllClose
(
boxes_np
,
[[[
0.0
,
0.0
,
0.5
,
0.5
],
self
.
assertAllClose
(
boxes
,
[[
0.0
,
0.0
,
0.5
,
0.5
],
[
0.5
,
0.5
,
0.8
,
0.8
]],
[
0.5
,
0.5
,
0.8
,
0.8
]])
[[
0.5
,
0.5
,
1.0
,
1.0
],
self
.
assertAllClose
(
scores
,
[[
0.7
,
0.6
]])
[
0.0
,
0.0
,
0.0
,
0.0
]]])
self
.
assertAllClose
(
classes
,
[[
1
,
2
]])
self
.
assertAllClose
(
scores_np
,
[[
0.7
,
0.6
],
self
.
assertAllClose
(
masks
,
np
.
arange
(
32
).
reshape
([
2
,
4
,
4
]))
[
0.9
,
0.0
]])
self
.
assertAllClose
(
num_detections
,
[
2
])
self
.
assertAllClose
(
classes_np
,
[[
1
,
2
],
[
2
,
1
]])
self
.
assertAllClose
(
masks_np
,
np
.
arange
(
64
).
reshape
([
2
,
2
,
4
,
4
]))
self
.
assertAllClose
(
num_detections_np
,
[
2
,
1
])
def
test_export_saved_model_and_run_inference
(
self
):
def
test_export_saved_model_and_run_inference
(
self
):
checkpoint_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
'model-ckpt'
)
tmp_dir
=
self
.
get_temp_dir
()
self
.
_save_checkpoint_from_mock_model
(
checkpoint_path
,
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
use_moving_averages
=
False
)
use_moving_averages
=
False
)
inference_graph_path
=
os
.
path
.
join
(
self
.
get_temp_dir
(),
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
'saved_model'
)
saved_model_path
=
os
.
path
.
join
(
output_directory
,
'saved_model'
)
with
mock
.
patch
.
object
(
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
...
@@ -368,30 +427,84 @@ class ExportInferenceGraphTest(tf.test.TestCase):
...
@@ -368,30 +427,84 @@ class ExportInferenceGraphTest(tf.test.TestCase):
exporter
.
export_inference_graph
(
exporter
.
export_inference_graph
(
input_type
=
'tf_example'
,
input_type
=
'tf_example'
,
pipeline_config
=
pipeline_config
,
pipeline_config
=
pipeline_config
,
checkpoint_path
=
checkpoint_path
,
trained_checkpoint_prefix
=
trained_checkpoint_prefix
,
inference_graph_path
=
inference_graph_path
,
output_directory
=
output_directory
)
export_as_saved_model
=
True
)
tf_example_np
=
np
.
hstack
([
self
.
_create_tf_example
(
np
.
ones
((
4
,
4
,
3
)).
astype
(
np
.
uint8
))]
*
2
)
with
tf
.
Graph
().
as_default
()
as
od_graph
:
with
tf
.
Graph
().
as_default
()
as
od_graph
:
with
self
.
test_session
(
graph
=
od_graph
)
as
sess
:
with
self
.
test_session
(
graph
=
od_graph
)
as
sess
:
tf
.
saved_model
.
loader
.
load
(
tf
.
saved_model
.
loader
.
load
(
sess
,
[
tf
.
saved_model
.
tag_constants
.
SERVING
],
inference_graph_path
)
sess
,
[
tf
.
saved_model
.
tag_constants
.
SERVING
],
saved_model_path
)
tf_example
=
od_graph
.
get_tensor_by_name
(
'import/tf_example:0'
)
tf_example
=
od_graph
.
get_tensor_by_name
(
'tf_example:0'
)
boxes
=
od_graph
.
get_tensor_by_name
(
'import/detection_boxes:0'
)
boxes
=
od_graph
.
get_tensor_by_name
(
'detection_boxes:0'
)
scores
=
od_graph
.
get_tensor_by_name
(
'import/detection_scores:0'
)
scores
=
od_graph
.
get_tensor_by_name
(
'detection_scores:0'
)
classes
=
od_graph
.
get_tensor_by_name
(
'import/detection_classes:0'
)
classes
=
od_graph
.
get_tensor_by_name
(
'detection_classes:0'
)
masks
=
od_graph
.
get_tensor_by_name
(
'import/detection_masks:0'
)
masks
=
od_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
num_detections
=
od_graph
.
get_tensor_by_name
(
'import/num_detections:0'
)
num_detections
=
od_graph
.
get_tensor_by_name
(
'num_detections:0'
)
(
boxes
,
scores
,
classes
,
masks
,
num_detections
)
=
sess
.
run
(
(
boxes_np
,
scores_np
,
classes_np
,
masks_np
,
[
boxes
,
scores
,
classes
,
masks
,
num_detections
],
num_detections_np
)
=
sess
.
run
(
feed_dict
=
{
tf_example
:
self
.
_create_tf_example
(
[
boxes
,
scores
,
classes
,
masks
,
num_detections
],
np
.
ones
((
4
,
4
,
3
)).
astype
(
np
.
uint8
))})
feed_dict
=
{
tf_example
:
tf_example_np
})
self
.
assertAllClose
(
boxes
,
[[
0.0
,
0.0
,
0.5
,
0.5
],
self
.
assertAllClose
(
boxes_np
,
[[[
0.0
,
0.0
,
0.5
,
0.5
],
[
0.5
,
0.5
,
0.8
,
0.8
]])
[
0.5
,
0.5
,
0.8
,
0.8
]],
self
.
assertAllClose
(
scores
,
[[
0.7
,
0.6
]])
[[
0.5
,
0.5
,
1.0
,
1.0
],
self
.
assertAllClose
(
classes
,
[[
1
,
2
]])
[
0.0
,
0.0
,
0.0
,
0.0
]]])
self
.
assertAllClose
(
masks
,
np
.
arange
(
32
).
reshape
([
2
,
4
,
4
]))
self
.
assertAllClose
(
scores_np
,
[[
0.7
,
0.6
],
self
.
assertAllClose
(
num_detections
,
[
2
])
[
0.9
,
0.0
]])
self
.
assertAllClose
(
classes_np
,
[[
1
,
2
],
[
2
,
1
]])
self
.
assertAllClose
(
masks_np
,
np
.
arange
(
64
).
reshape
([
2
,
2
,
4
,
4
]))
self
.
assertAllClose
(
num_detections_np
,
[
2
,
1
])
def
test_export_checkpoint_and_run_inference
(
self
):
tmp_dir
=
self
.
get_temp_dir
()
trained_checkpoint_prefix
=
os
.
path
.
join
(
tmp_dir
,
'model.ckpt'
)
self
.
_save_checkpoint_from_mock_model
(
trained_checkpoint_prefix
,
use_moving_averages
=
False
)
output_directory
=
os
.
path
.
join
(
tmp_dir
,
'output'
)
model_path
=
os
.
path
.
join
(
output_directory
,
'model.ckpt'
)
meta_graph_path
=
model_path
+
'.meta'
with
mock
.
patch
.
object
(
model_builder
,
'build'
,
autospec
=
True
)
as
mock_builder
:
mock_builder
.
return_value
=
FakeModel
(
add_detection_masks
=
True
)
pipeline_config
=
pipeline_pb2
.
TrainEvalPipelineConfig
()
pipeline_config
.
eval_config
.
use_moving_averages
=
False
exporter
.
export_inference_graph
(
input_type
=
'tf_example'
,
pipeline_config
=
pipeline_config
,
trained_checkpoint_prefix
=
trained_checkpoint_prefix
,
output_directory
=
output_directory
)
tf_example_np
=
np
.
hstack
([
self
.
_create_tf_example
(
np
.
ones
((
4
,
4
,
3
)).
astype
(
np
.
uint8
))]
*
2
)
with
tf
.
Graph
().
as_default
()
as
od_graph
:
with
self
.
test_session
(
graph
=
od_graph
)
as
sess
:
new_saver
=
tf
.
train
.
import_meta_graph
(
meta_graph_path
)
new_saver
.
restore
(
sess
,
model_path
)
tf_example
=
od_graph
.
get_tensor_by_name
(
'tf_example:0'
)
boxes
=
od_graph
.
get_tensor_by_name
(
'detection_boxes:0'
)
scores
=
od_graph
.
get_tensor_by_name
(
'detection_scores:0'
)
classes
=
od_graph
.
get_tensor_by_name
(
'detection_classes:0'
)
masks
=
od_graph
.
get_tensor_by_name
(
'detection_masks:0'
)
num_detections
=
od_graph
.
get_tensor_by_name
(
'num_detections:0'
)
(
boxes_np
,
scores_np
,
classes_np
,
masks_np
,
num_detections_np
)
=
sess
.
run
(
[
boxes
,
scores
,
classes
,
masks
,
num_detections
],
feed_dict
=
{
tf_example
:
tf_example_np
})
self
.
assertAllClose
(
boxes_np
,
[[[
0.0
,
0.0
,
0.5
,
0.5
],
[
0.5
,
0.5
,
0.8
,
0.8
]],
[[
0.5
,
0.5
,
1.0
,
1.0
],
[
0.0
,
0.0
,
0.0
,
0.0
]]])
self
.
assertAllClose
(
scores_np
,
[[
0.7
,
0.6
],
[
0.9
,
0.0
]])
self
.
assertAllClose
(
classes_np
,
[[
1
,
2
],
[
2
,
1
]])
self
.
assertAllClose
(
masks_np
,
np
.
arange
(
64
).
reshape
([
2
,
2
,
4
,
4
]))
self
.
assertAllClose
(
num_detections_np
,
[
2
,
1
])
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
tf
.
test
.
main
()
object_detection/g3doc/configuring_jobs.md
View file @
dff0f0c1
...
@@ -157,6 +157,6 @@ number of workers, gpu type).
...
@@ -157,6 +157,6 @@ number of workers, gpu type).
## Configuring the Evaluator
## Configuring the Evaluator
Currently evaluation is fixed to generating metrics as defined by the PASCAL
Currently evaluation is fixed to generating metrics as defined by the PASCAL
VOC
VOC
challenge. The parameters for
`eval_config`
are set to reasonable defaults
challenge. The parameters for
`eval_config`
are set to reasonable defaults
and
and
typically do not need to be configured.
typically do not need to be configured.
object_detection/g3doc/img/example_cat.jpg
0 → 100644
View file @
dff0f0c1
238 KB
object_detection/g3doc/installation.md
View file @
dff0f0c1
...
@@ -74,6 +74,6 @@ to avoid running this manually, you can add it as a new line to the end of your
...
@@ -74,6 +74,6 @@ to avoid running this manually, you can add it as a new line to the end of your
You can test that you have correctly installed the Tensorflow Object Detection
\
You can test that you have correctly installed the Tensorflow Object Detection
\
API by running the following command:
API by running the following command:
```
bash
```
bash
python object_detection/builders/model_builder_test.py
python object_detection/builders/model_builder_test.py
```
```
object_detection/g3doc/preparing_inputs.md
View file @
dff0f0c1
...
@@ -7,39 +7,51 @@ TFRecords.
...
@@ -7,39 +7,51 @@ TFRecords.
## Generating the PASCAL VOC TFRecord files.
## Generating the PASCAL VOC TFRecord files.
The raw 2012 PASCAL VOC data set
can be download
ed
The raw 2012 PASCAL VOC data set
is locat
ed
[
here
](
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
)
.
[
here
](
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
)
.
Extract the tar file and run the
`create_pascal_tf_record`
script:
To download, extract and convert it to TFRecords, run the following commands
below:
```
bash
```
bash
# From tensorflow/models/object_detection
# From tensorflow/models
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar
-xvf
VOCtrainval_11-May-2012.tar
tar
-xvf
VOCtrainval_11-May-2012.tar
python create_pascal_tf_record.py
--data_dir
=
VOCdevkit
\
python object_detection/create_pascal_tf_record.py
\
--year
=
VOC2012
--set
=
train
--output_path
=
pascal_train.record
--label_map_path
=
object_detection/data/pascal_label_map.pbtxt
\
python create_pascal_tf_record.py
--data_dir
=
VOCdevkit
\
--data_dir
=
VOCdevkit
--year
=
VOC2012
--set
=
train
\
--year
=
VOC2012
--set
=
val
--output_path
=
pascal_val.record
--output_path
=
pascal_train.record
python object_detection/create_pascal_tf_record.py
\
--label_map_path
=
object_detection/data/pascal_label_map.pbtxt
\
--data_dir
=
VOCdevkit
--year
=
VOC2012
--set
=
val
\
--output_path
=
pascal_val.record
```
```
You should end up with two TFRecord files named
`pascal_train.record`
and
You should end up with two TFRecord files named
`pascal_train.record`
and
`pascal_val.record`
in the
`tensorflow/models
/object_detection
`
directory.
`pascal_val.record`
in the
`tensorflow/models`
directory.
The label map for the PASCAL VOC data set can be found at
The label map for the PASCAL VOC data set can be found at
`data/pascal_label_map.pbtxt`
.
`
object_detection/
data/pascal_label_map.pbtxt`
.
## Generating the Oxford-IIIT Pet TFRecord files.
## Generating the Oxford-IIIT Pet TFRecord files.
The Oxford-IIIT Pet data set
can be downloaded from
The Oxford-IIIT Pet data set
is located
[
t
he
ir websit
e
](
http://www.robots.ox.ac.uk/~vgg/data/pets/
)
.
Extract the tar
[
he
r
e
](
http://www.robots.ox.ac.uk/~vgg/data/pets/
)
.
To download, extract and
file and run the
`create_pet_tf_record`
script to generate TFRecords.
convert it to TFRecrods, run the following commands below:
```
bash
```
bash
# From tensorflow/models/object_detection
# From tensorflow/models
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
tar
-xvf
annotations.tar.gz
tar
-xvf
annotations.tar.gz
tar
-xvf
images.tar.gz
tar
-xvf
images.tar.gz
python create_pet_tf_record.py
--data_dir
=
`
pwd
`
--output_dir
=
`
pwd
`
python object_detection/create_pet_tf_record.py
\
--label_map_path
=
object_detection/data/pet_label_map.pbtxt
\
--data_dir
=
`
pwd
`
\
--output_dir
=
`
pwd
`
```
```
You should end up with two TFRecord files named
`pet_train.record`
and
You should end up with two TFRecord files named
`pet_train.record`
and
`pet_val.record`
in the
`tensorflow/models
/object_detection
`
directory.
`pet_val.record`
in the
`tensorflow/models`
directory.
The label map for the Pet dataset can be found at
`data/pet_label_map.pbtxt`
.
The label map for the Pet dataset can be found at
`object_detection/data/pet_label_map.pbtxt`
.
object_detection/g3doc/running_locally.md
View file @
dff0f0c1
...
@@ -77,5 +77,5 @@ tensorboard --logdir=${PATH_TO_MODEL_DIRECTORY}
...
@@ -77,5 +77,5 @@ tensorboard --logdir=${PATH_TO_MODEL_DIRECTORY}
```
```
where
`${PATH_TO_MODEL_DIRECTORY}`
points to the directory that contains the
where
`${PATH_TO_MODEL_DIRECTORY}`
points to the directory that contains the
train and eval directories. Please note it ma
ke
take Tensorboard a couple
train and eval directories. Please note it ma
y
take Tensorboard a couple
minutes
minutes
to populate with data.
to populate with data.
Prev
1
2
3
4
5
6
7
…
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment