Create your own video plot like the one above with this [Colab notebook](https://colab.research.google.com/github/tensorflow/models/blob/master/official/projects/movinet/tools/plot_movinet_video_stream_predictions.ipynb).
## Description
## Description
Mobile Video Networks (MoViNets) are efficient video classification models
Mobile Video Networks (MoViNets) are efficient video classification models
...
@@ -55,6 +60,8 @@ approach that performs redundant computation and limits temporal scope.
...
@@ -55,6 +60,8 @@ approach that performs redundant computation and limits temporal scope.
## History
## History
-**2022-03-14** Support quantized TF Lite models and add/update Colab
notebooks.
-**2021-07-12** Add TF Lite support and replace 3D stream models with
-**2021-07-12** Add TF Lite support and replace 3D stream models with
mobile-friendly (2+1)D stream.
mobile-friendly (2+1)D stream.
-**2021-05-30** Add streaming MoViNet checkpoints and examples.
-**2021-05-30** Add streaming MoViNet checkpoints and examples.
...
@@ -71,6 +78,7 @@ mobile-friendly (2+1)D stream.
...
@@ -71,6 +78,7 @@ mobile-friendly (2+1)D stream.
-[Requirements](#requirements)
-[Requirements](#requirements)
-[Results and Pretrained Weights](#results-and-pretrained-weights)
-[Results and Pretrained Weights](#results-and-pretrained-weights)
-[Kinetics 600](#kinetics-600)
-[Kinetics 600](#kinetics-600)
-[Kinetics 400](#kinetics-400)
-[Prediction Examples](#prediction-examples)
-[Prediction Examples](#prediction-examples)
-[TF Lite Example](#tf-lite-example)
-[TF Lite Example](#tf-lite-example)
-[Training and Evaluation](#training-and-evaluation)
-[Training and Evaluation](#training-and-evaluation)
...
@@ -165,7 +173,7 @@ different architecture. To download the old checkpoints, insert `_legacy` before
...
@@ -165,7 +173,7 @@ different architecture. To download the old checkpoints, insert `_legacy` before
For convenience, we provide converted TF Lite models for inference on mobile
For convenience, we provide converted TF Lite models for inference on mobile
devices. See the [TF Lite Example](#tf-lite-example) to export and run your own
devices. See the [TF Lite Example](#tf-lite-example) to export and run your own
models.
models. We also provide [quantized TF Lite binaries via TF Hub](https://tfhub.dev/s?deployment-format=lite&q=movinet).
For reference, MoViNet-A0-Stream runs with a similar latency to
For reference, MoViNet-A0-Stream runs with a similar latency to
[MobileNetV3-Large]
[MobileNetV3-Large]
...
@@ -188,7 +196,7 @@ W-2135 CPU.
...
@@ -188,7 +196,7 @@ W-2135 CPU.
### Kinetics 400
### Kinetics 400
We also have checkpoints for Kinetics 600 models available. See the Kinetics 600
We also have checkpoints for Kinetics 400 models available. See the Kinetics 600
sections for more details. To load checkpoints, set `num_classes=400`.
sections for more details. To load checkpoints, set `num_classes=400`.
#### Base Models
#### Base Models
...
@@ -226,7 +234,7 @@ backbone = movinet.Movinet(
...
@@ -226,7 +234,7 @@ backbone = movinet.Movinet(
use_external_states=False,
use_external_states=False,
)
)
model=movinet_model.MovinetClassifier(
model=movinet_model.MovinetClassifier(
backbone,num_classes=600,output_states=True)
backbone,num_classes=600,output_states=False)
# Create your example input here.
# Create your example input here.
# Refer to the paper for recommended input shapes.
# Refer to the paper for recommended input shapes.