Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
dc97aa0f
"examples/git@developer.sourcefind.cn:change/sglang.git" did not exist on "1ab6be1b2666eb77cc4f849e8bf7dfb7e1856f48"
Commit
dc97aa0f
authored
Apr 03, 2017
by
Neal Wu
Browse files
Upgrade to TF 1.0
parent
9333e607
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
20 additions
and
18 deletions
+20
-18
domain_adaptation/domain_separation/dsn.py
domain_adaptation/domain_separation/dsn.py
+6
-4
domain_adaptation/domain_separation/dsn_test.py
domain_adaptation/domain_separation/dsn_test.py
+1
-1
domain_adaptation/domain_separation/losses.py
domain_adaptation/domain_separation/losses.py
+7
-7
domain_adaptation/domain_separation/models_test.py
domain_adaptation/domain_separation/models_test.py
+1
-1
domain_adaptation/domain_separation/utils.py
domain_adaptation/domain_separation/utils.py
+5
-5
No files found.
domain_adaptation/domain_separation/dsn.py
View file @
dc97aa0f
...
@@ -282,15 +282,17 @@ def add_autoencoders(source_data, source_shared, target_data, target_shared,
...
@@ -282,15 +282,17 @@ def add_autoencoders(source_data, source_shared, target_data, target_shared,
# Add summaries
# Add summaries
source_reconstructions
=
tf
.
concat
(
source_reconstructions
=
tf
.
concat
(
map
(
normalize_images
,
[
axis
=
2
,
values
=
map
(
normalize_images
,
[
source_data
,
source_recons
,
source_shared_recons
,
source_data
,
source_recons
,
source_shared_recons
,
source_private_recons
source_private_recons
])
,
2
)
]))
target_reconstructions
=
tf
.
concat
(
target_reconstructions
=
tf
.
concat
(
map
(
normalize_images
,
[
axis
=
2
,
values
=
map
(
normalize_images
,
[
target_data
,
target_recons
,
target_shared_recons
,
target_data
,
target_recons
,
target_shared_recons
,
target_private_recons
target_private_recons
])
,
2
)
]))
tf
.
summary
.
image
(
tf
.
summary
.
image
(
'Source Images:Recons:RGB'
,
'Source Images:Recons:RGB'
,
source_reconstructions
[:,
:,
:,
:
3
],
source_reconstructions
[:,
:,
:,
:
3
],
...
...
domain_adaptation/domain_separation/dsn_test.py
View file @
dc97aa0f
...
@@ -26,7 +26,7 @@ class HelperFunctionsTest(tf.test.TestCase):
...
@@ -26,7 +26,7 @@ class HelperFunctionsTest(tf.test.TestCase):
with
self
.
test_session
()
as
sess
:
with
self
.
test_session
()
as
sess
:
# Test for when global_step < domain_separation_startpoint
# Test for when global_step < domain_separation_startpoint
step
=
tf
.
contrib
.
slim
.
get_or_create_global_step
()
step
=
tf
.
contrib
.
slim
.
get_or_create_global_step
()
sess
.
run
(
tf
.
initialize_
al
l
_variables
())
# global_step = 0
sess
.
run
(
tf
.
glob
al_variables
_initializer
())
# global_step = 0
params
=
{
'domain_separation_startpoint'
:
2
}
params
=
{
'domain_separation_startpoint'
:
2
}
weight
=
dsn
.
dsn_loss_coefficient
(
params
)
weight
=
dsn
.
dsn_loss_coefficient
(
params
)
weight_np
=
sess
.
run
(
weight
)
weight_np
=
sess
.
run
(
weight
)
...
...
domain_adaptation/domain_separation/losses.py
View file @
dc97aa0f
...
@@ -100,7 +100,7 @@ def mmd_loss(source_samples, target_samples, weight, scope=None):
...
@@ -100,7 +100,7 @@ def mmd_loss(source_samples, target_samples, weight, scope=None):
tag
=
'MMD Loss'
tag
=
'MMD Loss'
if
scope
:
if
scope
:
tag
=
scope
+
tag
tag
=
scope
+
tag
tf
.
contrib
.
deprecated
.
scalar_
summary
(
tag
,
loss_value
)
tf
.
summary
.
scalar
(
tag
,
loss_value
)
tf
.
losses
.
add_loss
(
loss_value
)
tf
.
losses
.
add_loss
(
loss_value
)
return
loss_value
return
loss_value
...
@@ -135,7 +135,7 @@ def correlation_loss(source_samples, target_samples, weight, scope=None):
...
@@ -135,7 +135,7 @@ def correlation_loss(source_samples, target_samples, weight, scope=None):
tag
=
'Correlation Loss'
tag
=
'Correlation Loss'
if
scope
:
if
scope
:
tag
=
scope
+
tag
tag
=
scope
+
tag
tf
.
contrib
.
deprecated
.
scalar_
summary
(
tag
,
corr_loss
)
tf
.
summary
.
scalar
(
tag
,
corr_loss
)
tf
.
losses
.
add_loss
(
corr_loss
)
tf
.
losses
.
add_loss
(
corr_loss
)
return
corr_loss
return
corr_loss
...
@@ -155,11 +155,11 @@ def dann_loss(source_samples, target_samples, weight, scope=None):
...
@@ -155,11 +155,11 @@ def dann_loss(source_samples, target_samples, weight, scope=None):
"""
"""
with
tf
.
variable_scope
(
'dann'
):
with
tf
.
variable_scope
(
'dann'
):
batch_size
=
tf
.
shape
(
source_samples
)[
0
]
batch_size
=
tf
.
shape
(
source_samples
)[
0
]
samples
=
tf
.
concat
([
source_samples
,
target_samples
]
,
0
)
samples
=
tf
.
concat
(
axis
=
0
,
values
=
[
source_samples
,
target_samples
])
samples
=
slim
.
flatten
(
samples
)
samples
=
slim
.
flatten
(
samples
)
domain_selection_mask
=
tf
.
concat
(
domain_selection_mask
=
tf
.
concat
(
[
tf
.
zeros
((
batch_size
,
1
)),
tf
.
ones
((
batch_size
,
1
))]
,
0
)
axis
=
0
,
values
=
[
tf
.
zeros
((
batch_size
,
1
)),
tf
.
ones
((
batch_size
,
1
))])
# Perform the gradient reversal and be careful with the shape.
# Perform the gradient reversal and be careful with the shape.
grl
=
grl_ops
.
gradient_reversal
(
samples
)
grl
=
grl_ops
.
gradient_reversal
(
samples
)
...
@@ -184,9 +184,9 @@ def dann_loss(source_samples, target_samples, weight, scope=None):
...
@@ -184,9 +184,9 @@ def dann_loss(source_samples, target_samples, weight, scope=None):
tag_loss
=
scope
+
tag_loss
tag_loss
=
scope
+
tag_loss
tag_accuracy
=
scope
+
tag_accuracy
tag_accuracy
=
scope
+
tag_accuracy
tf
.
contrib
.
deprecated
.
scalar_
summary
(
tf
.
summary
.
scalar
(
tag_loss
,
domain_loss
,
name
=
'domain_loss_summary'
)
tag_loss
,
domain_loss
,
name
=
'domain_loss_summary'
)
tf
.
contrib
.
deprecated
.
scalar_
summary
(
tf
.
summary
.
scalar
(
tag_accuracy
,
domain_accuracy
,
name
=
'domain_accuracy_summary'
)
tag_accuracy
,
domain_accuracy
,
name
=
'domain_accuracy_summary'
)
return
domain_loss
return
domain_loss
...
@@ -216,7 +216,7 @@ def difference_loss(private_samples, shared_samples, weight=1.0, name=''):
...
@@ -216,7 +216,7 @@ def difference_loss(private_samples, shared_samples, weight=1.0, name=''):
cost
=
tf
.
reduce_mean
(
tf
.
square
(
correlation_matrix
))
*
weight
cost
=
tf
.
reduce_mean
(
tf
.
square
(
correlation_matrix
))
*
weight
cost
=
tf
.
where
(
cost
>
0
,
cost
,
0
,
name
=
'value'
)
cost
=
tf
.
where
(
cost
>
0
,
cost
,
0
,
name
=
'value'
)
tf
.
contrib
.
deprecated
.
scalar_
summary
(
'losses/Difference Loss {}'
.
format
(
name
),
tf
.
summary
.
scalar
(
'losses/Difference Loss {}'
.
format
(
name
),
cost
)
cost
)
assert_op
=
tf
.
Assert
(
tf
.
is_finite
(
cost
),
[
cost
])
assert_op
=
tf
.
Assert
(
tf
.
is_finite
(
cost
),
[
cost
])
with
tf
.
control_dependencies
([
assert_op
]):
with
tf
.
control_dependencies
([
assert_op
]):
...
...
domain_adaptation/domain_separation/models_test.py
View file @
dc97aa0f
...
@@ -115,7 +115,7 @@ class DecoderTest(tf.test.TestCase):
...
@@ -115,7 +115,7 @@ class DecoderTest(tf.test.TestCase):
width
=
width
,
width
=
width
,
channels
=
channels
,
channels
=
channels
,
batch_norm_params
=
batch_norm_params
)
batch_norm_params
=
batch_norm_params
)
sess
.
run
(
tf
.
initialize_
al
l
_variables
())
sess
.
run
(
tf
.
glob
al_variables
_initializer
())
output_np
=
sess
.
run
(
output
)
output_np
=
sess
.
run
(
output
)
self
.
assertEqual
(
output_np
.
shape
,
(
32
,
height
,
width
,
channels
))
self
.
assertEqual
(
output_np
.
shape
,
(
32
,
height
,
width
,
channels
))
self
.
assertTrue
(
np
.
any
(
output_np
))
self
.
assertTrue
(
np
.
any
(
output_np
))
...
...
domain_adaptation/domain_separation/utils.py
View file @
dc97aa0f
...
@@ -75,15 +75,15 @@ def reshape_feature_maps(features_tensor):
...
@@ -75,15 +75,15 @@ def reshape_feature_maps(features_tensor):
num_filters
)
num_filters
)
num_filters_sqrt
=
int
(
num_filters_sqrt
)
num_filters_sqrt
=
int
(
num_filters_sqrt
)
conv_summary
=
tf
.
unstack
(
features_tensor
,
axis
=
3
)
conv_summary
=
tf
.
unstack
(
features_tensor
,
axis
=
3
)
conv_one_row
=
tf
.
concat
(
conv_summary
[
0
:
num_filters_sqrt
]
,
2
)
conv_one_row
=
tf
.
concat
(
axis
=
2
,
values
=
conv_summary
[
0
:
num_filters_sqrt
])
ind
=
1
ind
=
1
conv_final
=
conv_one_row
conv_final
=
conv_one_row
for
ind
in
range
(
1
,
num_filters_sqrt
):
for
ind
in
range
(
1
,
num_filters_sqrt
):
conv_one_row
=
tf
.
concat
(
conv_summary
[
conv_one_row
=
tf
.
concat
(
axis
=
2
,
ind
*
num_filters_sqrt
+
0
:
ind
*
num_filters_sqrt
+
num_filters_sqrt
],
values
=
conv_summary
[
2
)
ind
*
num_filters_sqrt
+
0
:
ind
*
num_filters_sqrt
+
num_filters_sqrt
]
)
conv_final
=
tf
.
concat
(
conv_final
=
tf
.
concat
(
[
tf
.
squeeze
(
conv_final
),
tf
.
squeeze
(
conv_one_row
)]
,
1
)
axis
=
1
,
values
=
[
tf
.
squeeze
(
conv_final
),
tf
.
squeeze
(
conv_one_row
)])
conv_final
=
tf
.
expand_dims
(
conv_final
,
-
1
)
conv_final
=
tf
.
expand_dims
(
conv_final
,
-
1
)
return
conv_final
return
conv_final
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment