Unverified Commit d5e826e3 authored by Steven Hickson's avatar Steven Hickson Committed by GitHub
Browse files

Merge branch 'master' into master

parents e1ac09e1 fc37f117
......@@ -4,6 +4,7 @@ from __future__ import print_function
"""Tasks that test correctness of algorithms."""
from six.moves import xrange
from common import reward as reward_lib # brain coder
from single_task import misc # brain coder
......@@ -124,5 +125,3 @@ class HillClimbingTask(object):
# closest next element.
# Maximum distance possible is num_actions * base / 2 = 3 * 8 / 2 = 12
return (len(prefix) + (1 - min_dist / 12.0)), False
......@@ -39,6 +39,7 @@ from absl import app
from absl import flags
from absl import logging
import numpy as np
from six.moves import xrange
import tensorflow as tf
from single_task import defaults # brain coder
......
......@@ -90,7 +90,7 @@ def walk_through(b):
root = tk.Tk()
image = b.render_nodes(b.task.nodes[[current_node],:])[0]
print image.shape
print(image.shape)
image = image.astype(np.uint8)
im = Image.fromarray(image)
im = ImageTk.PhotoImage(im)
......
......@@ -220,7 +220,7 @@ def plot_trajectory_first_person(dt, orig_maps, out_dir):
t.set_bbox(dict(color='white', alpha=0.85, pad=-0.1))
# Action to take.
action_latex = ['$\odot$ ', '$\curvearrowright$ ', '$\curvearrowleft$ ', '$\Uparrow$ ']
action_latex = ['$\odot$ ', '$\curvearrowright$ ', '$\curvearrowleft$ ', r'$\Uparrow$ ']
t = ax.text(0.99, 0.99, action_latex[actions[step_number]],
horizontalalignment='right',
verticalalignment='top',
......@@ -265,7 +265,7 @@ def plot_trajectory_first_person(dt, orig_maps, out_dir):
tmp_file_name = 'tmp.mp4'
line_ani.save(tmp_file_name, writer=writer, savefig_kwargs={'facecolor':'black'})
out_file_name = os.path.join(out_dir, 'vis_{:04d}.mp4'.format(i))
print out_file_name
print(out_file_name)
if fu.exists(out_file_name):
gfile.Remove(out_file_name)
......@@ -318,7 +318,7 @@ def plot_trajectory(dt, hardness, orig_maps, out_dir):
ax.set_ylim([xy1[1], xy2[1]])
file_name = os.path.join(out_dir, 'trajectory_{:04d}.png'.format(i))
print file_name
print(file_name)
with fu.fopen(file_name, 'w') as f:
plt.savefig(f)
plt.close(fig)
......
......@@ -16,6 +16,7 @@
"""Utilities for manipulating files.
"""
import os
import numpy as np
import PIL
from tensorflow.python.platform import gfile
import cv2
......
......@@ -19,6 +19,7 @@ import skimage.morphology
import numpy as np
import networkx as nx
import itertools
import logging
import graph_tool as gt
import graph_tool.topology
import graph_tool.generation
......
......@@ -17,6 +17,7 @@
"""
import copy
import skimage.morphology
import logging
import numpy as np
import scipy.ndimage
import matplotlib.pyplot as plt
......
......@@ -17,6 +17,7 @@ r"""Generaly Utilities.
"""
import numpy as np, cPickle, os, time
from six.moves import xrange
import src.file_utils as fu
import logging
......@@ -93,12 +94,12 @@ def tic_toc_print(interval, string):
global tic_toc_print_time_old
if 'tic_toc_print_time_old' not in globals():
tic_toc_print_time_old = time.time()
print string
print(string)
else:
new_time = time.time()
if new_time - tic_toc_print_time_old > interval:
tic_toc_print_time_old = new_time;
print string
print(string)
def mkdir_if_missing(output_dir):
if not fu.exists(output_dir):
......@@ -165,4 +166,3 @@ def calc_pr(gt, out, wt=None):
ap = voc_ap(rec, prec)
return ap, rec, prec
......@@ -58,7 +58,7 @@ def main(_):
#iteration = FLAGS.iteration
if not tf.gfile.Exists(FLAGS.input_codes):
print '\nInput codes not found.\n'
print('\nInput codes not found.\n')
return
with tf.gfile.FastGFile(FLAGS.input_codes, 'rb') as code_file:
......
......@@ -171,7 +171,7 @@ def train():
'code_length': model.average_code_length
}
np_tensors = sess.run(tf_tensors, feed_dict=feed_dict)
print np_tensors['code_length']
print(np_tensors['code_length'])
sv.Stop()
......
......@@ -18,6 +18,7 @@
import os
import numpy as np
from six.moves import xrange
import tensorflow as tf
import synthetic_model
......
......@@ -16,6 +16,7 @@
"""Binary code sample generator."""
import numpy as np
from six.moves import xrange
_CRC_LINE = [
......
......@@ -21,6 +21,7 @@ from __future__ import unicode_literals
import math
import numpy as np
import six
import tensorflow as tf
......@@ -39,7 +40,7 @@ class RsqrtInitializer(object):
1.0 / sqrt(product(shape[dims]))
**kwargs: Extra keyword arguments to pass to tf.truncated_normal.
"""
if isinstance(dims, (int, long)):
if isinstance(dims, six.integer_types):
self._dims = [dims]
else:
self._dims = dims
......@@ -73,7 +74,7 @@ class RectifierInitializer(object):
sqrt(scale / product(shape[dims])).
**kwargs: Extra keyword arguments to pass to tf.truncated_normal.
"""
if isinstance(dims, (int, long)):
if isinstance(dims, six.integer_types):
self._dims = [dims]
else:
self._dims = dims
......
......@@ -16,6 +16,7 @@
"""Define some typical masked 2D convolutions."""
import numpy as np
from six.moves import xrange
import tensorflow as tf
import block_util
......
......@@ -19,6 +19,7 @@ from __future__ import division
from __future__ import unicode_literals
import numpy as np
from six.moves import xrange
import tensorflow as tf
import blocks_masked_conv2d
......
......@@ -22,6 +22,7 @@ import math
import os
import numpy as np
from six.moves import xrange
import tensorflow as tf
import blocks_std
......
......@@ -25,6 +25,7 @@ from __future__ import print_function
from delf import feature_pb2
from delf import datum_io
import numpy as np
from six.moves import xrange
import tensorflow as tf
......
......@@ -22,6 +22,7 @@ import sys
import time
import numpy as np
from six.moves import xrange
import tensorflow as tf
from differential_privacy.dp_sgd.dp_optimizer import dp_optimizer
......
......@@ -17,6 +17,7 @@
import collections
from six.moves import xrange
import tensorflow as tf
OrderedDict = collections.OrderedDict
......
......@@ -19,6 +19,7 @@ from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import xrange
def labels_from_probs(probs):
......@@ -127,5 +128,3 @@ def aggregation_most_frequent(logits):
result[i] = np.argmax(label_counts)
return np.asarray(result, dtype=np.int32)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment