Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
cadde4ee
Commit
cadde4ee
authored
Feb 24, 2022
by
Zihan Wang
Browse files
remove one file
parent
78a2d252
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
1592 deletions
+0
-1592
official/projects/longformer/transform_longformer_tokenized_into_tfrecord.py
...ongformer/transform_longformer_tokenized_into_tfrecord.py
+0
-1592
No files found.
official/projects/longformer/transform_longformer_tokenized_into_tfrecord.py
deleted
100644 → 0
View file @
78a2d252
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT library to process data for classification task."""
import
collections
import
csv
import
importlib
import
json
import
os
from
absl
import
logging
import
tensorflow
as
tf
import
tensorflow_datasets
as
tfds
from
official.nlp.bert
import
tokenization
class
InputExample
(
object
):
"""A single training/test example for simple seq regression/classification."""
def
__init__
(
self
,
guid
,
text_a
,
text_b
=
None
,
label
=
None
,
weight
=
None
,
example_id
=
None
):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string for classification, float for regression. The
label of the example. This should be specified for train and dev
examples, but not for test examples.
weight: (Optional) float. The weight of the example to be used during
training.
example_id: (Optional) int. The int identification number of example in
the corpus.
"""
self
.
guid
=
guid
self
.
text_a
=
text_a
self
.
text_b
=
text_b
self
.
label
=
label
self
.
weight
=
weight
self
.
example_id
=
example_id
class
InputFeatures
(
object
):
"""A single set of features of data."""
def
__init__
(
self
,
input_ids
,
input_mask
,
segment_ids
,
label_id
,
is_real_example
=
True
,
weight
=
None
,
example_id
=
None
):
self
.
input_ids
=
input_ids
self
.
input_mask
=
input_mask
self
.
segment_ids
=
segment_ids
self
.
label_id
=
label_id
self
.
is_real_example
=
is_real_example
self
.
weight
=
weight
self
.
example_id
=
example_id
class
DataProcessor
(
object
):
"""Base class for converters for seq regression/classification datasets."""
def
__init__
(
self
,
process_text_fn
=
tokenization
.
convert_to_unicode
):
self
.
process_text_fn
=
process_text_fn
self
.
is_regression
=
False
self
.
label_type
=
None
def
get_train_examples
(
self
,
data_dir
):
"""Gets a collection of `InputExample`s for the train set."""
raise
NotImplementedError
()
def
get_dev_examples
(
self
,
data_dir
):
"""Gets a collection of `InputExample`s for the dev set."""
raise
NotImplementedError
()
def
get_test_examples
(
self
,
data_dir
):
"""Gets a collection of `InputExample`s for prediction."""
raise
NotImplementedError
()
def
get_labels
(
self
):
"""Gets the list of labels for this data set."""
raise
NotImplementedError
()
@
staticmethod
def
get_processor_name
():
"""Gets the string identifier of the processor."""
raise
NotImplementedError
()
@
classmethod
def
_read_tsv
(
cls
,
input_file
,
quotechar
=
None
):
"""Reads a tab separated value file."""
with
tf
.
io
.
gfile
.
GFile
(
input_file
,
"r"
)
as
f
:
reader
=
csv
.
reader
(
f
,
delimiter
=
"
\t
"
,
quotechar
=
quotechar
)
lines
=
[]
for
line
in
reader
:
lines
.
append
(
line
)
return
lines
@
classmethod
def
_read_jsonl
(
cls
,
input_file
):
"""Reads a json line file."""
with
tf
.
io
.
gfile
.
GFile
(
input_file
,
"r"
)
as
f
:
lines
=
[]
for
json_str
in
f
:
lines
.
append
(
json
.
loads
(
json_str
))
return
lines
def
featurize_example
(
self
,
*
kargs
,
**
kwargs
):
"""Converts a single `InputExample` into a single `InputFeatures`."""
return
convert_single_example
(
*
kargs
,
**
kwargs
)
class
DefaultGLUEDataProcessor
(
DataProcessor
):
"""Processor for the SuperGLUE dataset."""
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
return
self
.
_create_examples_tfds
(
"train"
)
def
get_dev_examples
(
self
,
data_dir
):
"""See base class."""
return
self
.
_create_examples_tfds
(
"validation"
)
def
get_test_examples
(
self
,
data_dir
):
"""See base class."""
return
self
.
_create_examples_tfds
(
"test"
)
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
raise
NotImplementedError
()
class
AxProcessor
(
DataProcessor
):
"""Processor for the AX dataset (GLUE diagnostics dataset)."""
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
train_mnli_dataset
=
tfds
.
load
(
"glue/mnli"
,
split
=
"train"
,
try_gcs
=
True
).
as_numpy_iterator
()
return
self
.
_create_examples_tfds
(
train_mnli_dataset
,
"train"
)
def
get_dev_examples
(
self
,
data_dir
):
"""See base class."""
val_mnli_dataset
=
tfds
.
load
(
"glue/mnli"
,
split
=
"validation_matched"
,
try_gcs
=
True
).
as_numpy_iterator
()
return
self
.
_create_examples_tfds
(
val_mnli_dataset
,
"validation"
)
def
get_test_examples
(
self
,
data_dir
):
"""See base class."""
test_ax_dataset
=
tfds
.
load
(
"glue/ax"
,
split
=
"test"
,
try_gcs
=
True
).
as_numpy_iterator
()
return
self
.
_create_examples_tfds
(
test_ax_dataset
,
"test"
)
def
get_labels
(
self
):
"""See base class."""
return
[
"contradiction"
,
"entailment"
,
"neutral"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"AX"
def
_create_examples_tfds
(
self
,
dataset
,
set_type
):
"""Creates examples for the training/dev/test sets."""
examples
=
[]
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
label
=
"contradiction"
text_a
=
self
.
process_text_fn
(
example
[
"hypothesis"
])
text_b
=
self
.
process_text_fn
(
example
[
"premise"
])
if
set_type
!=
"test"
:
label
=
self
.
get_labels
()[
example
[
"label"
]]
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
weight
=
None
))
return
examples
class
ColaProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the CoLA data set (GLUE version)."""
def
get_labels
(
self
):
"""See base class."""
return
[
"0"
,
"1"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"COLA"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"glue/cola"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
label
=
"0"
text_a
=
self
.
process_text_fn
(
example
[
"sentence"
])
if
set_type
!=
"test"
:
label
=
str
(
example
[
"label"
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
None
,
label
=
label
,
weight
=
None
))
return
examples
class
ImdbProcessor
(
DataProcessor
):
"""Processor for the IMDb dataset."""
def
get_labels
(
self
):
return
[
"neg"
,
"pos"
]
def
get_train_examples
(
self
,
data_dir
):
return
self
.
_create_examples
(
os
.
path
.
join
(
data_dir
,
"train"
))
def
get_dev_examples
(
self
,
data_dir
):
return
self
.
_create_examples
(
os
.
path
.
join
(
data_dir
,
"test"
))
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"IMDB"
def
_create_examples
(
self
,
data_dir
):
"""Creates examples."""
examples
=
[]
for
label
in
[
"neg"
,
"pos"
]:
cur_dir
=
os
.
path
.
join
(
data_dir
,
label
)
for
filename
in
tf
.
io
.
gfile
.
listdir
(
cur_dir
):
if
not
filename
.
endswith
(
"txt"
):
continue
if
len
(
examples
)
%
1000
==
0
:
logging
.
info
(
"Loading dev example %d"
,
len
(
examples
))
path
=
os
.
path
.
join
(
cur_dir
,
filename
)
with
tf
.
io
.
gfile
.
GFile
(
path
,
"r"
)
as
f
:
text
=
f
.
read
().
strip
().
replace
(
"<br />"
,
" "
)
examples
.
append
(
InputExample
(
guid
=
"unused_id"
,
text_a
=
text
,
text_b
=
None
,
label
=
label
))
return
examples
class
MnliProcessor
(
DataProcessor
):
"""Processor for the MultiNLI data set (GLUE version)."""
def
__init__
(
self
,
mnli_type
=
"matched"
,
process_text_fn
=
tokenization
.
convert_to_unicode
):
super
(
MnliProcessor
,
self
).
__init__
(
process_text_fn
)
self
.
dataset
=
tfds
.
load
(
"glue/mnli"
,
try_gcs
=
True
)
if
mnli_type
not
in
(
"matched"
,
"mismatched"
):
raise
ValueError
(
"Invalid `mnli_type`: %s"
%
mnli_type
)
self
.
mnli_type
=
mnli_type
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
return
self
.
_create_examples_tfds
(
"train"
)
def
get_dev_examples
(
self
,
data_dir
):
"""See base class."""
if
self
.
mnli_type
==
"matched"
:
return
self
.
_create_examples_tfds
(
"validation_matched"
)
else
:
return
self
.
_create_examples_tfds
(
"validation_mismatched"
)
def
get_test_examples
(
self
,
data_dir
):
"""See base class."""
if
self
.
mnli_type
==
"matched"
:
return
self
.
_create_examples_tfds
(
"test_matched"
)
else
:
return
self
.
_create_examples_tfds
(
"test_mismatched"
)
def
get_labels
(
self
):
"""See base class."""
return
[
"contradiction"
,
"entailment"
,
"neutral"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"MNLI"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"glue/mnli"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
label
=
"contradiction"
text_a
=
self
.
process_text_fn
(
example
[
"hypothesis"
])
text_b
=
self
.
process_text_fn
(
example
[
"premise"
])
if
set_type
!=
"test"
:
label
=
self
.
get_labels
()[
example
[
"label"
]]
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
weight
=
None
))
return
examples
class
MrpcProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the MRPC data set (GLUE version)."""
def
get_labels
(
self
):
"""See base class."""
return
[
"0"
,
"1"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"MRPC"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"glue/mrpc"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
label
=
"0"
text_a
=
self
.
process_text_fn
(
example
[
"sentence1"
])
text_b
=
self
.
process_text_fn
(
example
[
"sentence2"
])
if
set_type
!=
"test"
:
label
=
str
(
example
[
"label"
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
weight
=
None
))
return
examples
class
PawsxProcessor
(
DataProcessor
):
"""Processor for the PAWS-X data set."""
supported_languages
=
[
"de"
,
"en"
,
"es"
,
"fr"
,
"ja"
,
"ko"
,
"zh"
]
def
__init__
(
self
,
language
=
"en"
,
process_text_fn
=
tokenization
.
convert_to_unicode
):
super
(
PawsxProcessor
,
self
).
__init__
(
process_text_fn
)
if
language
==
"all"
:
self
.
languages
=
PawsxProcessor
.
supported_languages
elif
language
not
in
PawsxProcessor
.
supported_languages
:
raise
ValueError
(
"language %s is not supported for PAWS-X task."
%
language
)
else
:
self
.
languages
=
[
language
]
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
lines
=
[]
for
language
in
self
.
languages
:
if
language
==
"en"
:
train_tsv
=
"train.tsv"
else
:
train_tsv
=
"translated_train.tsv"
# Skips the header.
lines
.
extend
(
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
language
,
train_tsv
))[
1
:])
examples
=
[]
for
i
,
line
in
enumerate
(
lines
):
guid
=
"train-%d"
%
i
text_a
=
self
.
process_text_fn
(
line
[
1
])
text_b
=
self
.
process_text_fn
(
line
[
2
])
label
=
self
.
process_text_fn
(
line
[
3
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
def
get_dev_examples
(
self
,
data_dir
):
"""See base class."""
lines
=
[]
for
lang
in
PawsxProcessor
.
supported_languages
:
lines
.
extend
(
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
lang
,
"dev_2k.tsv"
))[
1
:])
examples
=
[]
for
i
,
line
in
enumerate
(
lines
):
guid
=
"dev-%d"
%
i
text_a
=
self
.
process_text_fn
(
line
[
1
])
text_b
=
self
.
process_text_fn
(
line
[
2
])
label
=
self
.
process_text_fn
(
line
[
3
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
def
get_test_examples
(
self
,
data_dir
):
"""See base class."""
examples_by_lang
=
{
k
:
[]
for
k
in
self
.
supported_languages
}
for
lang
in
self
.
supported_languages
:
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
lang
,
"test_2k.tsv"
))[
1
:]
for
i
,
line
in
enumerate
(
lines
):
guid
=
"test-%d"
%
i
text_a
=
self
.
process_text_fn
(
line
[
1
])
text_b
=
self
.
process_text_fn
(
line
[
2
])
label
=
self
.
process_text_fn
(
line
[
3
])
examples_by_lang
[
lang
].
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples_by_lang
def
get_labels
(
self
):
"""See base class."""
return
[
"0"
,
"1"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"XTREME-PAWS-X"
class
QnliProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the QNLI data set (GLUE version)."""
def
get_labels
(
self
):
"""See base class."""
return
[
"entailment"
,
"not_entailment"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"QNLI"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"glue/qnli"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
label
=
"entailment"
text_a
=
self
.
process_text_fn
(
example
[
"question"
])
text_b
=
self
.
process_text_fn
(
example
[
"sentence"
])
if
set_type
!=
"test"
:
label
=
self
.
get_labels
()[
example
[
"label"
]]
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
weight
=
None
))
return
examples
class
QqpProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the QQP data set (GLUE version)."""
def
get_labels
(
self
):
"""See base class."""
return
[
"0"
,
"1"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"QQP"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"glue/qqp"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
label
=
"0"
text_a
=
self
.
process_text_fn
(
example
[
"question1"
])
text_b
=
self
.
process_text_fn
(
example
[
"question2"
])
if
set_type
!=
"test"
:
label
=
str
(
example
[
"label"
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
weight
=
None
))
return
examples
class
RteProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the RTE data set (GLUE version)."""
def
get_labels
(
self
):
"""See base class."""
# All datasets are converted to 2-class split, where for 3-class datasets we
# collapse neutral and contradiction into not_entailment.
return
[
"entailment"
,
"not_entailment"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"RTE"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"glue/rte"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
label
=
"entailment"
text_a
=
self
.
process_text_fn
(
example
[
"sentence1"
])
text_b
=
self
.
process_text_fn
(
example
[
"sentence2"
])
if
set_type
!=
"test"
:
label
=
self
.
get_labels
()[
example
[
"label"
]]
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
weight
=
None
))
return
examples
class
SstProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the SST-2 data set (GLUE version)."""
def
get_labels
(
self
):
"""See base class."""
return
[
"0"
,
"1"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"SST-2"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"glue/sst2"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
label
=
"0"
text_a
=
self
.
process_text_fn
(
example
[
"sentence"
])
if
set_type
!=
"test"
:
label
=
str
(
example
[
"label"
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
None
,
label
=
label
,
weight
=
None
))
return
examples
class
StsBProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the STS-B data set (GLUE version)."""
def
__init__
(
self
,
process_text_fn
=
tokenization
.
convert_to_unicode
):
super
(
StsBProcessor
,
self
).
__init__
(
process_text_fn
=
process_text_fn
)
self
.
is_regression
=
True
self
.
label_type
=
float
self
.
_labels
=
None
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"glue/stsb"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
label
=
0.0
text_a
=
self
.
process_text_fn
(
example
[
"sentence1"
])
text_b
=
self
.
process_text_fn
(
example
[
"sentence2"
])
if
set_type
!=
"test"
:
label
=
self
.
label_type
(
example
[
"label"
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
weight
=
None
))
return
examples
def
get_labels
(
self
):
"""See base class."""
return
self
.
_labels
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"STS-B"
class
TfdsProcessor
(
DataProcessor
):
"""Processor for generic text classification and regression TFDS data set.
The TFDS parameters are expected to be provided in the tfds_params string, in
a comma-separated list of parameter assignments.
Examples:
tfds_params="dataset=scicite,text_key=string"
tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
tfds_params="dataset=glue/cola,text_key=sentence"
tfds_params="dataset=glue/sst2,text_key=sentence"
tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
"is_regression=true,label_type=float"
tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
"skip_label=-1"
Possible parameters (please refer to the documentation of Tensorflow Datasets
(TFDS) for the meaning of individual parameters):
dataset: Required dataset name (potentially with subset and version number).
data_dir: Optional TFDS source root directory.
module_import: Optional Dataset module to import.
train_split: Name of the train split (defaults to `train`).
dev_split: Name of the dev split (defaults to `validation`).
test_split: Name of the test split (defaults to `test`).
text_key: Key of the text_a feature (defaults to `text`).
text_b_key: Key of the second text feature if available.
label_key: Key of the label feature (defaults to `label`).
test_text_key: Key of the text feature to use in test set.
test_text_b_key: Key of the second text feature to use in test set.
test_label: String to be used as the label for all test examples.
label_type: Type of the label key (defaults to `int`).
weight_key: Key of the float sample weight (is not used if not provided).
is_regression: Whether the task is a regression problem (defaults to False).
skip_label: Skip examples with given label (defaults to None).
"""
def
__init__
(
self
,
tfds_params
,
process_text_fn
=
tokenization
.
convert_to_unicode
):
super
(
TfdsProcessor
,
self
).
__init__
(
process_text_fn
)
self
.
_process_tfds_params_str
(
tfds_params
)
if
self
.
module_import
:
importlib
.
import_module
(
self
.
module_import
)
self
.
dataset
,
info
=
tfds
.
load
(
self
.
dataset_name
,
data_dir
=
self
.
data_dir
,
with_info
=
True
)
if
self
.
is_regression
:
self
.
_labels
=
None
else
:
self
.
_labels
=
list
(
range
(
info
.
features
[
self
.
label_key
].
num_classes
))
def
_process_tfds_params_str
(
self
,
params_str
):
"""Extracts TFDS parameters from a comma-separated assignements string."""
dtype_map
=
{
"int"
:
int
,
"float"
:
float
}
cast_str_to_bool
=
lambda
s
:
s
.
lower
()
not
in
[
"false"
,
"0"
]
tuples
=
[
x
.
split
(
"="
)
for
x
in
params_str
.
split
(
","
)]
d
=
{
k
.
strip
():
v
.
strip
()
for
k
,
v
in
tuples
}
self
.
dataset_name
=
d
[
"dataset"
]
# Required.
self
.
data_dir
=
d
.
get
(
"data_dir"
,
None
)
self
.
module_import
=
d
.
get
(
"module_import"
,
None
)
self
.
train_split
=
d
.
get
(
"train_split"
,
"train"
)
self
.
dev_split
=
d
.
get
(
"dev_split"
,
"validation"
)
self
.
test_split
=
d
.
get
(
"test_split"
,
"test"
)
self
.
text_key
=
d
.
get
(
"text_key"
,
"text"
)
self
.
text_b_key
=
d
.
get
(
"text_b_key"
,
None
)
self
.
label_key
=
d
.
get
(
"label_key"
,
"label"
)
self
.
test_text_key
=
d
.
get
(
"test_text_key"
,
self
.
text_key
)
self
.
test_text_b_key
=
d
.
get
(
"test_text_b_key"
,
self
.
text_b_key
)
self
.
test_label
=
d
.
get
(
"test_label"
,
"test_example"
)
self
.
label_type
=
dtype_map
[
d
.
get
(
"label_type"
,
"int"
)]
self
.
is_regression
=
cast_str_to_bool
(
d
.
get
(
"is_regression"
,
"False"
))
self
.
weight_key
=
d
.
get
(
"weight_key"
,
None
)
self
.
skip_label
=
d
.
get
(
"skip_label"
,
None
)
if
self
.
skip_label
is
not
None
:
self
.
skip_label
=
self
.
label_type
(
self
.
skip_label
)
def
get_train_examples
(
self
,
data_dir
):
assert
data_dir
is
None
return
self
.
_create_examples
(
self
.
train_split
,
"train"
)
def
get_dev_examples
(
self
,
data_dir
):
assert
data_dir
is
None
return
self
.
_create_examples
(
self
.
dev_split
,
"dev"
)
def
get_test_examples
(
self
,
data_dir
):
assert
data_dir
is
None
return
self
.
_create_examples
(
self
.
test_split
,
"test"
)
def
get_labels
(
self
):
return
self
.
_labels
def
get_processor_name
(
self
):
return
"TFDS_"
+
self
.
dataset_name
def
_create_examples
(
self
,
split_name
,
set_type
):
"""Creates examples for the training/dev/test sets."""
if
split_name
not
in
self
.
dataset
:
raise
ValueError
(
"Split {} not available."
.
format
(
split_name
))
dataset
=
self
.
dataset
[
split_name
].
as_numpy_iterator
()
examples
=
[]
text_b
,
weight
=
None
,
None
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
if
set_type
==
"test"
:
text_a
=
self
.
process_text_fn
(
example
[
self
.
test_text_key
])
if
self
.
test_text_b_key
:
text_b
=
self
.
process_text_fn
(
example
[
self
.
test_text_b_key
])
label
=
self
.
test_label
else
:
text_a
=
self
.
process_text_fn
(
example
[
self
.
text_key
])
if
self
.
text_b_key
:
text_b
=
self
.
process_text_fn
(
example
[
self
.
text_b_key
])
label
=
self
.
label_type
(
example
[
self
.
label_key
])
if
self
.
skip_label
is
not
None
and
label
==
self
.
skip_label
:
continue
if
self
.
weight_key
:
weight
=
float
(
example
[
self
.
weight_key
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
weight
=
weight
))
return
examples
class
WnliProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the WNLI data set (GLUE version)."""
def
get_labels
(
self
):
"""See base class."""
return
[
"0"
,
"1"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"WNLI"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"glue/wnli"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
i
,
example
in
enumerate
(
dataset
):
guid
=
"%s-%s"
%
(
set_type
,
i
)
label
=
"0"
text_a
=
self
.
process_text_fn
(
example
[
"sentence1"
])
text_b
=
self
.
process_text_fn
(
example
[
"sentence2"
])
if
set_type
!=
"test"
:
label
=
str
(
example
[
"label"
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
weight
=
None
))
return
examples
class
XnliProcessor
(
DataProcessor
):
"""Processor for the XNLI data set."""
supported_languages
=
[
"ar"
,
"bg"
,
"de"
,
"el"
,
"en"
,
"es"
,
"fr"
,
"hi"
,
"ru"
,
"sw"
,
"th"
,
"tr"
,
"ur"
,
"vi"
,
"zh"
]
def
__init__
(
self
,
language
=
"en"
,
process_text_fn
=
tokenization
.
convert_to_unicode
):
super
(
XnliProcessor
,
self
).
__init__
(
process_text_fn
)
if
language
==
"all"
:
self
.
languages
=
XnliProcessor
.
supported_languages
elif
language
not
in
XnliProcessor
.
supported_languages
:
raise
ValueError
(
"language %s is not supported for XNLI task."
%
language
)
else
:
self
.
languages
=
[
language
]
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
lines
=
[]
for
language
in
self
.
languages
:
# Skips the header.
lines
.
extend
(
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"multinli"
,
"multinli.train.%s.tsv"
%
language
))[
1
:])
examples
=
[]
for
i
,
line
in
enumerate
(
lines
):
guid
=
"train-%d"
%
i
text_a
=
self
.
process_text_fn
(
line
[
0
])
text_b
=
self
.
process_text_fn
(
line
[
1
])
label
=
self
.
process_text_fn
(
line
[
2
])
if
label
==
self
.
process_text_fn
(
"contradictory"
):
label
=
self
.
process_text_fn
(
"contradiction"
)
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
def
get_dev_examples
(
self
,
data_dir
):
"""See base class."""
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"xnli.dev.tsv"
))
examples
=
[]
for
i
,
line
in
enumerate
(
lines
):
if
i
==
0
:
continue
guid
=
"dev-%d"
%
i
text_a
=
self
.
process_text_fn
(
line
[
6
])
text_b
=
self
.
process_text_fn
(
line
[
7
])
label
=
self
.
process_text_fn
(
line
[
1
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
def
get_test_examples
(
self
,
data_dir
):
"""See base class."""
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"xnli.test.tsv"
))
examples_by_lang
=
{
k
:
[]
for
k
in
XnliProcessor
.
supported_languages
}
for
i
,
line
in
enumerate
(
lines
):
if
i
==
0
:
continue
guid
=
"test-%d"
%
i
language
=
self
.
process_text_fn
(
line
[
0
])
text_a
=
self
.
process_text_fn
(
line
[
6
])
text_b
=
self
.
process_text_fn
(
line
[
7
])
label
=
self
.
process_text_fn
(
line
[
1
])
examples_by_lang
[
language
].
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples_by_lang
def
get_labels
(
self
):
"""See base class."""
return
[
"contradiction"
,
"entailment"
,
"neutral"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"XNLI"
class
XtremePawsxProcessor
(
DataProcessor
):
"""Processor for the XTREME PAWS-X data set."""
supported_languages
=
[
"de"
,
"en"
,
"es"
,
"fr"
,
"ja"
,
"ko"
,
"zh"
]
def
__init__
(
self
,
process_text_fn
=
tokenization
.
convert_to_unicode
,
translated_data_dir
=
None
,
only_use_en_dev
=
True
):
"""See base class.
Args:
process_text_fn: See base class.
translated_data_dir: If specified, will also include translated data in
the training and testing data.
only_use_en_dev: If True, only use english dev data. Otherwise, use dev
data from all languages.
"""
super
(
XtremePawsxProcessor
,
self
).
__init__
(
process_text_fn
)
self
.
translated_data_dir
=
translated_data_dir
self
.
only_use_en_dev
=
only_use_en_dev
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
examples
=
[]
if
self
.
translated_data_dir
is
None
:
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"train-en.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
"train-%d"
%
i
text_a
=
self
.
process_text_fn
(
line
[
0
])
text_b
=
self
.
process_text_fn
(
line
[
1
])
label
=
self
.
process_text_fn
(
line
[
2
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
else
:
for
lang
in
self
.
supported_languages
:
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
self
.
translated_data_dir
,
"translate-train"
,
f
"en-
{
lang
}
-translated.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
f
"train-
{
lang
}
-
{
i
}
"
text_a
=
self
.
process_text_fn
(
line
[
2
])
text_b
=
self
.
process_text_fn
(
line
[
3
])
label
=
self
.
process_text_fn
(
line
[
4
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
def
get_dev_examples
(
self
,
data_dir
):
"""See base class."""
examples
=
[]
if
self
.
only_use_en_dev
:
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"dev-en.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
"dev-%d"
%
i
text_a
=
self
.
process_text_fn
(
line
[
0
])
text_b
=
self
.
process_text_fn
(
line
[
1
])
label
=
self
.
process_text_fn
(
line
[
2
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
else
:
for
lang
in
self
.
supported_languages
:
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
f
"dev-
{
lang
}
.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
f
"dev-
{
lang
}
-
{
i
}
"
text_a
=
self
.
process_text_fn
(
line
[
0
])
text_b
=
self
.
process_text_fn
(
line
[
1
])
label
=
self
.
process_text_fn
(
line
[
2
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
def
get_test_examples
(
self
,
data_dir
):
"""See base class."""
examples_by_lang
=
{}
for
lang
in
self
.
supported_languages
:
examples_by_lang
[
lang
]
=
[]
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
f
"test-
{
lang
}
.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
f
"test-
{
lang
}
-
{
i
}
"
text_a
=
self
.
process_text_fn
(
line
[
0
])
text_b
=
self
.
process_text_fn
(
line
[
1
])
label
=
"0"
examples_by_lang
[
lang
].
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
if
self
.
translated_data_dir
is
not
None
:
for
lang
in
self
.
supported_languages
:
if
lang
==
"en"
:
continue
examples_by_lang
[
f
"
{
lang
}
-en"
]
=
[]
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
self
.
translated_data_dir
,
"translate-test"
,
f
"test-
{
lang
}
-en-translated.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
f
"test-
{
lang
}
-en-
{
i
}
"
text_a
=
self
.
process_text_fn
(
line
[
2
])
text_b
=
self
.
process_text_fn
(
line
[
3
])
label
=
"0"
examples_by_lang
[
f
"
{
lang
}
-en"
].
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples_by_lang
def
get_labels
(
self
):
"""See base class."""
return
[
"0"
,
"1"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"XTREME-PAWS-X"
class
XtremeXnliProcessor
(
DataProcessor
):
"""Processor for the XTREME XNLI data set."""
supported_languages
=
[
"ar"
,
"bg"
,
"de"
,
"el"
,
"en"
,
"es"
,
"fr"
,
"hi"
,
"ru"
,
"sw"
,
"th"
,
"tr"
,
"ur"
,
"vi"
,
"zh"
]
def
__init__
(
self
,
process_text_fn
=
tokenization
.
convert_to_unicode
,
translated_data_dir
=
None
,
only_use_en_dev
=
True
):
"""See base class.
Args:
process_text_fn: See base class.
translated_data_dir: If specified, will also include translated data in
the training data.
only_use_en_dev: If True, only use english dev data. Otherwise, use dev
data from all languages.
"""
super
(
XtremeXnliProcessor
,
self
).
__init__
(
process_text_fn
)
self
.
translated_data_dir
=
translated_data_dir
self
.
only_use_en_dev
=
only_use_en_dev
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"train-en.tsv"
))
examples
=
[]
if
self
.
translated_data_dir
is
None
:
for
i
,
line
in
enumerate
(
lines
):
guid
=
"train-%d"
%
i
text_a
=
self
.
process_text_fn
(
line
[
0
])
text_b
=
self
.
process_text_fn
(
line
[
1
])
label
=
self
.
process_text_fn
(
line
[
2
])
if
label
==
self
.
process_text_fn
(
"contradictory"
):
label
=
self
.
process_text_fn
(
"contradiction"
)
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
else
:
for
lang
in
self
.
supported_languages
:
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
self
.
translated_data_dir
,
"translate-train"
,
f
"en-
{
lang
}
-translated.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
f
"train-
{
lang
}
-
{
i
}
"
text_a
=
self
.
process_text_fn
(
line
[
2
])
text_b
=
self
.
process_text_fn
(
line
[
3
])
label
=
self
.
process_text_fn
(
line
[
4
])
if
label
==
self
.
process_text_fn
(
"contradictory"
):
label
=
self
.
process_text_fn
(
"contradiction"
)
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
def
get_dev_examples
(
self
,
data_dir
):
"""See base class."""
examples
=
[]
if
self
.
only_use_en_dev
:
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"dev-en.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
"dev-%d"
%
i
text_a
=
self
.
process_text_fn
(
line
[
0
])
text_b
=
self
.
process_text_fn
(
line
[
1
])
label
=
self
.
process_text_fn
(
line
[
2
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
else
:
for
lang
in
self
.
supported_languages
:
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
f
"dev-
{
lang
}
.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
f
"dev-
{
lang
}
-
{
i
}
"
text_a
=
self
.
process_text_fn
(
line
[
0
])
text_b
=
self
.
process_text_fn
(
line
[
1
])
label
=
self
.
process_text_fn
(
line
[
2
])
if
label
==
self
.
process_text_fn
(
"contradictory"
):
label
=
self
.
process_text_fn
(
"contradiction"
)
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
def
get_test_examples
(
self
,
data_dir
):
"""See base class."""
examples_by_lang
=
{}
for
lang
in
self
.
supported_languages
:
examples_by_lang
[
lang
]
=
[]
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
f
"test-
{
lang
}
.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
f
"test-
{
lang
}
-
{
i
}
"
text_a
=
self
.
process_text_fn
(
line
[
0
])
text_b
=
self
.
process_text_fn
(
line
[
1
])
label
=
"contradiction"
examples_by_lang
[
lang
].
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
if
self
.
translated_data_dir
is
not
None
:
for
lang
in
self
.
supported_languages
:
if
lang
==
"en"
:
continue
examples_by_lang
[
f
"
{
lang
}
-en"
]
=
[]
lines
=
self
.
_read_tsv
(
os
.
path
.
join
(
self
.
translated_data_dir
,
"translate-test"
,
f
"test-
{
lang
}
-en-translated.tsv"
))
for
i
,
line
in
enumerate
(
lines
):
guid
=
f
"test-
{
lang
}
-en-
{
i
}
"
text_a
=
self
.
process_text_fn
(
line
[
2
])
text_b
=
self
.
process_text_fn
(
line
[
3
])
label
=
"contradiction"
examples_by_lang
[
f
"
{
lang
}
-en"
].
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples_by_lang
def
get_labels
(
self
):
"""See base class."""
return
[
"contradiction"
,
"entailment"
,
"neutral"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"XTREME-XNLI"
def
convert_single_example
(
ex_index
,
example
,
label_list
,
max_seq_length
,
tokenizer
):
"""Converts a single `InputExample` into a single `InputFeatures`."""
label_map
=
{}
if
label_list
:
for
(
i
,
label
)
in
enumerate
(
label_list
):
label_map
[
label
]
=
i
tokens_a
=
tokenizer
.
tokenize
(
example
.
text_a
)
tokens_b
=
None
if
example
.
text_b
:
tokens_b
=
tokenizer
.
tokenize
(
example
.
text_b
)
if
tokens_b
:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair
(
tokens_a
,
tokens_b
,
max_seq_length
-
3
)
else
:
# Account for [CLS] and [SEP] with "- 2"
if
len
(
tokens_a
)
>
max_seq_length
-
2
:
tokens_a
=
tokens_a
[
0
:(
max_seq_length
-
2
)]
seg_id_a
=
0
seg_id_b
=
1
seg_id_cls
=
0
seg_id_pad
=
0
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens
=
[]
segment_ids
=
[]
tokens
.
append
(
"[CLS]"
)
segment_ids
.
append
(
seg_id_cls
)
for
token
in
tokens_a
:
tokens
.
append
(
token
)
segment_ids
.
append
(
seg_id_a
)
tokens
.
append
(
"[SEP]"
)
segment_ids
.
append
(
seg_id_a
)
if
tokens_b
:
for
token
in
tokens_b
:
tokens
.
append
(
token
)
segment_ids
.
append
(
seg_id_b
)
tokens
.
append
(
"[SEP]"
)
segment_ids
.
append
(
seg_id_b
)
input_ids
=
tokenizer
.
convert_tokens_to_ids
(
tokens
)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask
=
[
1
]
*
len
(
input_ids
)
# Zero-pad up to the sequence length.
while
len
(
input_ids
)
<
max_seq_length
:
input_ids
.
append
(
0
)
input_mask
.
append
(
0
)
segment_ids
.
append
(
seg_id_pad
)
assert
len
(
input_ids
)
==
max_seq_length
assert
len
(
input_mask
)
==
max_seq_length
assert
len
(
segment_ids
)
==
max_seq_length
label_id
=
label_map
[
example
.
label
]
if
label_map
else
example
.
label
if
ex_index
<
5
:
logging
.
info
(
"*** Example ***"
)
logging
.
info
(
"guid: %s"
,
(
example
.
guid
))
logging
.
info
(
"tokens: %s"
,
" "
.
join
([
tokenization
.
printable_text
(
x
)
for
x
in
tokens
]))
logging
.
info
(
"input_ids: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
input_ids
]))
logging
.
info
(
"input_mask: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
input_mask
]))
logging
.
info
(
"segment_ids: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
segment_ids
]))
logging
.
info
(
"label: %s (id = %s)"
,
example
.
label
,
str
(
label_id
))
logging
.
info
(
"weight: %s"
,
example
.
weight
)
logging
.
info
(
"example_id: %s"
,
example
.
example_id
)
feature
=
InputFeatures
(
input_ids
=
input_ids
,
input_mask
=
input_mask
,
segment_ids
=
segment_ids
,
label_id
=
label_id
,
is_real_example
=
True
,
weight
=
example
.
weight
,
example_id
=
example
.
example_id
)
return
feature
class
AXgProcessor
(
DataProcessor
):
"""Processor for the AXg dataset (SuperGLUE diagnostics dataset)."""
def
get_test_examples
(
self
,
data_dir
):
"""See base class."""
return
self
.
_create_examples
(
self
.
_read_jsonl
(
os
.
path
.
join
(
data_dir
,
"AX-g.jsonl"
)),
"test"
)
def
get_labels
(
self
):
"""See base class."""
return
[
"entailment"
,
"not_entailment"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"AXg"
def
_create_examples
(
self
,
lines
,
set_type
):
"""Creates examples for the training/dev/test sets."""
examples
=
[]
for
line
in
lines
:
guid
=
"%s-%s"
%
(
set_type
,
self
.
process_text_fn
(
str
(
line
[
"idx"
])))
text_a
=
self
.
process_text_fn
(
line
[
"premise"
])
text_b
=
self
.
process_text_fn
(
line
[
"hypothesis"
])
label
=
self
.
process_text_fn
(
line
[
"label"
])
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
class
BoolQProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the BoolQ dataset (SuperGLUE diagnostics dataset)."""
def
get_labels
(
self
):
"""See base class."""
return
[
"True"
,
"False"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"BoolQ"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"super_glue/boolq"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
example
in
dataset
:
guid
=
"%s-%s"
%
(
set_type
,
self
.
process_text_fn
(
str
(
example
[
"idx"
])))
text_a
=
self
.
process_text_fn
(
example
[
"question"
])
text_b
=
self
.
process_text_fn
(
example
[
"passage"
])
label
=
"False"
if
set_type
!=
"test"
:
label
=
self
.
get_labels
()[
example
[
"label"
]]
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
class
CBProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the CB dataset (SuperGLUE diagnostics dataset)."""
def
get_labels
(
self
):
"""See base class."""
return
[
"entailment"
,
"neutral"
,
"contradiction"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"CB"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
dataset
=
tfds
.
load
(
"super_glue/cb"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
examples
=
[]
for
example
in
dataset
:
guid
=
"%s-%s"
%
(
set_type
,
self
.
process_text_fn
(
str
(
example
[
"idx"
])))
text_a
=
self
.
process_text_fn
(
example
[
"premise"
])
text_b
=
self
.
process_text_fn
(
example
[
"hypothesis"
])
label
=
"entailment"
if
set_type
!=
"test"
:
label
=
self
.
get_labels
()[
example
[
"label"
]]
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
class
SuperGLUERTEProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the RTE dataset (SuperGLUE version)."""
def
get_labels
(
self
):
"""See base class."""
# All datasets are converted to 2-class split, where for 3-class datasets we
# collapse neutral and contradiction into not_entailment.
return
[
"entailment"
,
"not_entailment"
]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"RTESuperGLUE"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
examples
=
[]
dataset
=
tfds
.
load
(
"super_glue/rte"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
for
example
in
dataset
:
guid
=
"%s-%s"
%
(
set_type
,
self
.
process_text_fn
(
str
(
example
[
"idx"
])))
text_a
=
self
.
process_text_fn
(
example
[
"premise"
])
text_b
=
self
.
process_text_fn
(
example
[
"hypothesis"
])
label
=
"entailment"
if
set_type
!=
"test"
:
label
=
self
.
get_labels
()[
example
[
"label"
]]
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
return
examples
class
WiCInputExample
(
InputExample
):
"""Processor for the WiC dataset (SuperGLUE version)."""
def
__init__
(
self
,
guid
,
text_a
,
text_b
=
None
,
label
=
None
,
word
=
None
,
weight
=
None
,
example_id
=
None
):
"""A single training/test example for simple seq regression/classification."""
super
(
WiCInputExample
,
self
).
__init__
(
guid
,
text_a
,
text_b
,
label
,
weight
,
example_id
)
self
.
word
=
word
class
WiCProcessor
(
DefaultGLUEDataProcessor
):
"""Processor for the RTE dataset (SuperGLUE version)."""
def
get_labels
(
self
):
"""Not used."""
return
[]
@
staticmethod
def
get_processor_name
():
"""See base class."""
return
"RTESuperGLUE"
def
_create_examples_tfds
(
self
,
set_type
):
"""Creates examples for the training/dev/test sets."""
examples
=
[]
dataset
=
tfds
.
load
(
"super_glue/wic"
,
split
=
set_type
,
try_gcs
=
True
).
as_numpy_iterator
()
for
example
in
dataset
:
guid
=
"%s-%s"
%
(
set_type
,
self
.
process_text_fn
(
str
(
example
[
"idx"
])))
text_a
=
self
.
process_text_fn
(
example
[
"sentence1"
])
text_b
=
self
.
process_text_fn
(
example
[
"sentence2"
])
word
=
self
.
process_text_fn
(
example
[
"word"
])
label
=
0
if
set_type
!=
"test"
:
label
=
example
[
"label"
]
examples
.
append
(
WiCInputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
word
=
word
,
label
=
label
))
return
examples
def
featurize_example
(
self
,
ex_index
,
example
,
label_list
,
max_seq_length
,
tokenizer
):
"""Here we concate sentence1, sentence2, word together with [SEP] tokens."""
del
label_list
tokens_a
=
tokenizer
.
tokenize
(
example
.
text_a
)
tokens_b
=
tokenizer
.
tokenize
(
example
.
text_b
)
tokens_word
=
tokenizer
.
tokenize
(
example
.
word
)
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP], [SEP] with "- 4"
# Here we only pop out the first two sentence tokens.
_truncate_seq_pair
(
tokens_a
,
tokens_b
,
max_seq_length
-
4
-
len
(
tokens_word
))
seg_id_a
=
0
seg_id_b
=
1
seg_id_c
=
2
seg_id_cls
=
0
seg_id_pad
=
0
tokens
=
[]
segment_ids
=
[]
tokens
.
append
(
"[CLS]"
)
segment_ids
.
append
(
seg_id_cls
)
for
token
in
tokens_a
:
tokens
.
append
(
token
)
segment_ids
.
append
(
seg_id_a
)
tokens
.
append
(
"[SEP]"
)
segment_ids
.
append
(
seg_id_a
)
for
token
in
tokens_b
:
tokens
.
append
(
token
)
segment_ids
.
append
(
seg_id_b
)
tokens
.
append
(
"[SEP]"
)
segment_ids
.
append
(
seg_id_b
)
for
token
in
tokens_word
:
tokens
.
append
(
token
)
segment_ids
.
append
(
seg_id_c
)
tokens
.
append
(
"[SEP]"
)
segment_ids
.
append
(
seg_id_c
)
input_ids
=
tokenizer
.
convert_tokens_to_ids
(
tokens
)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask
=
[
1
]
*
len
(
input_ids
)
# Zero-pad up to the sequence length.
while
len
(
input_ids
)
<
max_seq_length
:
input_ids
.
append
(
0
)
input_mask
.
append
(
0
)
segment_ids
.
append
(
seg_id_pad
)
assert
len
(
input_ids
)
==
max_seq_length
assert
len
(
input_mask
)
==
max_seq_length
assert
len
(
segment_ids
)
==
max_seq_length
label_id
=
example
.
label
if
ex_index
<
5
:
logging
.
info
(
"*** Example ***"
)
logging
.
info
(
"guid: %s"
,
(
example
.
guid
))
logging
.
info
(
"tokens: %s"
,
" "
.
join
([
tokenization
.
printable_text
(
x
)
for
x
in
tokens
]))
logging
.
info
(
"input_ids: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
input_ids
]))
logging
.
info
(
"input_mask: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
input_mask
]))
logging
.
info
(
"segment_ids: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
segment_ids
]))
logging
.
info
(
"label: %s (id = %s)"
,
example
.
label
,
str
(
label_id
))
logging
.
info
(
"weight: %s"
,
example
.
weight
)
logging
.
info
(
"example_id: %s"
,
example
.
example_id
)
feature
=
InputFeatures
(
input_ids
=
input_ids
,
input_mask
=
input_mask
,
segment_ids
=
segment_ids
,
label_id
=
label_id
,
is_real_example
=
True
,
weight
=
example
.
weight
,
example_id
=
example
.
example_id
)
return
feature
def
file_based_convert_examples_to_features
(
examples
,
label_list
,
max_seq_length
,
tokenizer
,
output_file
,
label_type
=
None
,
featurize_fn
=
None
):
"""Convert a set of `InputExample`s to a TFRecord file."""
tf
.
io
.
gfile
.
makedirs
(
os
.
path
.
dirname
(
output_file
))
writer
=
tf
.
io
.
TFRecordWriter
(
output_file
)
for
ex_index
,
example
in
enumerate
(
examples
):
if
ex_index
%
10000
==
0
:
logging
.
info
(
"Writing example %d of %d"
,
ex_index
,
len
(
examples
))
if
featurize_fn
:
feature
=
featurize_fn
(
ex_index
,
example
,
label_list
,
max_seq_length
,
tokenizer
)
else
:
feature
=
convert_single_example
(
ex_index
,
example
,
label_list
,
max_seq_length
,
tokenizer
)
def
create_int_feature
(
values
):
f
=
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
list
(
values
)))
return
f
def
create_float_feature
(
values
):
f
=
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
list
(
values
)))
return
f
features
=
collections
.
OrderedDict
()
features
[
"input_ids"
]
=
create_int_feature
(
feature
.
input_ids
)
features
[
"input_mask"
]
=
create_int_feature
(
feature
.
input_mask
)
features
[
"segment_ids"
]
=
create_int_feature
(
feature
.
segment_ids
)
if
label_type
is
not
None
and
label_type
==
float
:
features
[
"label_ids"
]
=
create_float_feature
([
feature
.
label_id
])
elif
feature
.
label_id
is
not
None
:
features
[
"label_ids"
]
=
create_int_feature
([
feature
.
label_id
])
features
[
"is_real_example"
]
=
create_int_feature
(
[
int
(
feature
.
is_real_example
)])
if
feature
.
weight
is
not
None
:
features
[
"weight"
]
=
create_float_feature
([
feature
.
weight
])
if
feature
.
example_id
is
not
None
:
features
[
"example_id"
]
=
create_int_feature
([
feature
.
example_id
])
else
:
features
[
"example_id"
]
=
create_int_feature
([
ex_index
])
tf_example
=
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
features
))
writer
.
write
(
tf_example
.
SerializeToString
())
writer
.
close
()
def
_truncate_seq_pair
(
tokens_a
,
tokens_b
,
max_length
):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while
True
:
total_length
=
len
(
tokens_a
)
+
len
(
tokens_b
)
if
total_length
<=
max_length
:
break
if
len
(
tokens_a
)
>
len
(
tokens_b
):
tokens_a
.
pop
()
else
:
tokens_b
.
pop
()
def
generate_tf_record_from_data_file
(
processor
,
data_dir
,
tokenizer
,
train_data_output_path
=
None
,
eval_data_output_path
=
None
,
test_data_output_path
=
None
,
max_seq_length
=
128
):
"""Generates and saves training data into a tf record file.
Args:
processor: Input processor object to be used for generating data. Subclass
of `DataProcessor`.
data_dir: Directory that contains train/eval/test data to process.
tokenizer: The tokenizer to be applied on the data.
train_data_output_path: Output to which processed tf record for training
will be saved.
eval_data_output_path: Output to which processed tf record for evaluation
will be saved.
test_data_output_path: Output to which processed tf record for testing
will be saved. Must be a pattern template with {} if processor has
language specific test data.
max_seq_length: Maximum sequence length of the to be generated
training/eval data.
Returns:
A dictionary containing input meta data.
"""
assert
train_data_output_path
or
eval_data_output_path
label_list
=
processor
.
get_labels
()
label_type
=
getattr
(
processor
,
"label_type"
,
None
)
is_regression
=
getattr
(
processor
,
"is_regression"
,
False
)
has_sample_weights
=
getattr
(
processor
,
"weight_key"
,
False
)
num_training_data
=
0
if
train_data_output_path
:
train_input_data_examples
=
processor
.
get_train_examples
(
data_dir
)
file_based_convert_examples_to_features
(
train_input_data_examples
,
label_list
,
max_seq_length
,
tokenizer
,
train_data_output_path
,
label_type
,
processor
.
featurize_example
)
num_training_data
=
len
(
train_input_data_examples
)
if
eval_data_output_path
:
eval_input_data_examples
=
processor
.
get_dev_examples
(
data_dir
)
file_based_convert_examples_to_features
(
eval_input_data_examples
,
label_list
,
max_seq_length
,
tokenizer
,
eval_data_output_path
,
label_type
,
processor
.
featurize_example
)
meta_data
=
{
"processor_type"
:
processor
.
get_processor_name
(),
"train_data_size"
:
num_training_data
,
"max_seq_length"
:
max_seq_length
,
}
if
test_data_output_path
:
test_input_data_examples
=
processor
.
get_test_examples
(
data_dir
)
if
isinstance
(
test_input_data_examples
,
dict
):
for
language
,
examples
in
test_input_data_examples
.
items
():
file_based_convert_examples_to_features
(
examples
,
label_list
,
max_seq_length
,
tokenizer
,
test_data_output_path
.
format
(
language
),
label_type
,
processor
.
featurize_example
)
meta_data
[
"test_{}_data_size"
.
format
(
language
)]
=
len
(
examples
)
else
:
file_based_convert_examples_to_features
(
test_input_data_examples
,
label_list
,
max_seq_length
,
tokenizer
,
test_data_output_path
,
label_type
,
processor
.
featurize_example
)
meta_data
[
"test_data_size"
]
=
len
(
test_input_data_examples
)
if
is_regression
:
meta_data
[
"task_type"
]
=
"bert_regression"
meta_data
[
"label_type"
]
=
{
int
:
"int"
,
float
:
"float"
}[
label_type
]
else
:
meta_data
[
"task_type"
]
=
"bert_classification"
meta_data
[
"num_labels"
]
=
len
(
processor
.
get_labels
())
if
has_sample_weights
:
meta_data
[
"has_sample_weights"
]
=
True
if
eval_data_output_path
:
meta_data
[
"eval_data_size"
]
=
len
(
eval_input_data_examples
)
return
meta_data
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment