Unverified Commit ca552843 authored by Srihari Humbarwadi's avatar Srihari Humbarwadi Committed by GitHub
Browse files

Merge branch 'panoptic-segmentation' into panoptic-segmentation

parents 7e2f7a35 6b90e134
...@@ -338,7 +338,7 @@ with the Python API: ...@@ -338,7 +338,7 @@ with the Python API:
```python ```python
# Create the interpreter and signature runner # Create the interpreter and signature runner
interpreter = tf.lite.Interpreter('/tmp/movinet_a0_stream.tflite') interpreter = tf.lite.Interpreter('/tmp/movinet_a0_stream.tflite')
signature = interpreter.get_signature_runner() runner = interpreter.get_signature_runner()
# Extract state names and create the initial (zero) states # Extract state names and create the initial (zero) states
def state_name(name: str) -> str: def state_name(name: str) -> str:
...@@ -358,7 +358,7 @@ clips = tf.split(video, video.shape[1], axis=1) ...@@ -358,7 +358,7 @@ clips = tf.split(video, video.shape[1], axis=1)
states = init_states states = init_states
for clip in clips: for clip in clips:
# Input shape: [1, 1, 172, 172, 3] # Input shape: [1, 1, 172, 172, 3]
outputs = signature(**states, image=clip) outputs = runner(**states, image=clip)
logits = outputs.pop('logits') logits = outputs.pop('logits')
states = outputs states = outputs
``` ```
......
...@@ -121,7 +121,7 @@ class ExportSavedModelTest(tf.test.TestCase): ...@@ -121,7 +121,7 @@ class ExportSavedModelTest(tf.test.TestCase):
tflite_model = converter.convert() tflite_model = converter.convert()
interpreter = tf.lite.Interpreter(model_content=tflite_model) interpreter = tf.lite.Interpreter(model_content=tflite_model)
signature = interpreter.get_signature_runner() runner = interpreter.get_signature_runner('serving_default')
def state_name(name: str) -> str: def state_name(name: str) -> str:
return name[len('serving_default_'):-len(':0')] return name[len('serving_default_'):-len(':0')]
...@@ -137,7 +137,7 @@ class ExportSavedModelTest(tf.test.TestCase): ...@@ -137,7 +137,7 @@ class ExportSavedModelTest(tf.test.TestCase):
states = init_states states = init_states
for clip in clips: for clip in clips:
outputs = signature(**states, image=clip) outputs = runner(**states, image=clip)
logits = outputs.pop('logits') logits = outputs.pop('logits')
states = outputs states = outputs
......
...@@ -17,10 +17,10 @@ ...@@ -17,10 +17,10 @@
Reference: https://arxiv.org/pdf/2103.11511.pdf Reference: https://arxiv.org/pdf/2103.11511.pdf
""" """
import dataclasses
import math import math
from typing import Dict, Mapping, Optional, Sequence, Tuple, Union from typing import Dict, Mapping, Optional, Sequence, Tuple, Union
import dataclasses
import tensorflow as tf import tensorflow as tf
from official.modeling import hyperparams from official.modeling import hyperparams
...@@ -454,7 +454,7 @@ class Movinet(tf.keras.Model): ...@@ -454,7 +454,7 @@ class Movinet(tf.keras.Model):
stochastic_depth_idx = 1 stochastic_depth_idx = 1
for block_idx, block in enumerate(self._block_specs): for block_idx, block in enumerate(self._block_specs):
if isinstance(block, StemSpec): if isinstance(block, StemSpec):
x, states = movinet_layers.Stem( layer_obj = movinet_layers.Stem(
block.filters, block.filters,
block.kernel_size, block.kernel_size,
block.strides, block.strides,
...@@ -466,9 +466,9 @@ class Movinet(tf.keras.Model): ...@@ -466,9 +466,9 @@ class Movinet(tf.keras.Model):
batch_norm_layer=self._norm, batch_norm_layer=self._norm,
batch_norm_momentum=self._norm_momentum, batch_norm_momentum=self._norm_momentum,
batch_norm_epsilon=self._norm_epsilon, batch_norm_epsilon=self._norm_epsilon,
state_prefix='state/stem', state_prefix='state_stem',
name='stem')( name='stem')
x, states=states) x, states = layer_obj(x, states=states)
endpoints['stem'] = x endpoints['stem'] = x
elif isinstance(block, MovinetBlockSpec): elif isinstance(block, MovinetBlockSpec):
if not (len(block.expand_filters) == len(block.kernel_sizes) == if not (len(block.expand_filters) == len(block.kernel_sizes) ==
...@@ -486,8 +486,8 @@ class Movinet(tf.keras.Model): ...@@ -486,8 +486,8 @@ class Movinet(tf.keras.Model):
self._stochastic_depth_drop_rate * stochastic_depth_idx / self._stochastic_depth_drop_rate * stochastic_depth_idx /
num_layers) num_layers)
expand_filters, kernel_size, strides = layer expand_filters, kernel_size, strides = layer
name = f'b{block_idx-1}/l{layer_idx}' name = f'block{block_idx-1}_layer{layer_idx}'
x, states = movinet_layers.MovinetBlock( layer_obj = movinet_layers.MovinetBlock(
block.base_filters, block.base_filters,
expand_filters, expand_filters,
kernel_size=kernel_size, kernel_size=kernel_size,
...@@ -505,13 +505,14 @@ class Movinet(tf.keras.Model): ...@@ -505,13 +505,14 @@ class Movinet(tf.keras.Model):
batch_norm_layer=self._norm, batch_norm_layer=self._norm,
batch_norm_momentum=self._norm_momentum, batch_norm_momentum=self._norm_momentum,
batch_norm_epsilon=self._norm_epsilon, batch_norm_epsilon=self._norm_epsilon,
state_prefix=f'state/{name}', state_prefix=f'state_{name}',
name=name)( name=name)
x, states=states) x, states = layer_obj(x, states=states)
endpoints[name] = x endpoints[name] = x
stochastic_depth_idx += 1 stochastic_depth_idx += 1
elif isinstance(block, HeadSpec): elif isinstance(block, HeadSpec):
x, states = movinet_layers.Head( layer_obj = movinet_layers.Head(
project_filters=block.project_filters, project_filters=block.project_filters,
conv_type=self._conv_type, conv_type=self._conv_type,
activation=self._activation, activation=self._activation,
...@@ -520,9 +521,9 @@ class Movinet(tf.keras.Model): ...@@ -520,9 +521,9 @@ class Movinet(tf.keras.Model):
batch_norm_layer=self._norm, batch_norm_layer=self._norm,
batch_norm_momentum=self._norm_momentum, batch_norm_momentum=self._norm_momentum,
batch_norm_epsilon=self._norm_epsilon, batch_norm_epsilon=self._norm_epsilon,
state_prefix='state/head', state_prefix='state_head',
name='head')( name='head')
x, states=states) x, states = layer_obj(x, states=states)
endpoints['head'] = x endpoints['head'] = x
else: else:
raise ValueError('Unknown block type {}'.format(block)) raise ValueError('Unknown block type {}'.format(block))
...@@ -567,7 +568,7 @@ class Movinet(tf.keras.Model): ...@@ -567,7 +568,7 @@ class Movinet(tf.keras.Model):
for block_idx, block in enumerate(block_specs): for block_idx, block in enumerate(block_specs):
if isinstance(block, StemSpec): if isinstance(block, StemSpec):
if block.kernel_size[0] > 1: if block.kernel_size[0] > 1:
states['state/stem/stream_buffer'] = ( states['state_stem_stream_buffer'] = (
input_shape[0], input_shape[0],
input_shape[1], input_shape[1],
divide_resolution(input_shape[2], num_downsamples), divide_resolution(input_shape[2], num_downsamples),
...@@ -590,8 +591,10 @@ class Movinet(tf.keras.Model): ...@@ -590,8 +591,10 @@ class Movinet(tf.keras.Model):
self._conv_type in ['2plus1d', '3d_2plus1d']): self._conv_type in ['2plus1d', '3d_2plus1d']):
num_downsamples += 1 num_downsamples += 1
prefix = f'state_block{block_idx}_layer{layer_idx}'
if kernel_size[0] > 1: if kernel_size[0] > 1:
states[f'state/b{block_idx}/l{layer_idx}/stream_buffer'] = ( states[f'{prefix}_stream_buffer'] = (
input_shape[0], input_shape[0],
kernel_size[0] - 1, kernel_size[0] - 1,
divide_resolution(input_shape[2], num_downsamples), divide_resolution(input_shape[2], num_downsamples),
...@@ -599,13 +602,13 @@ class Movinet(tf.keras.Model): ...@@ -599,13 +602,13 @@ class Movinet(tf.keras.Model):
expand_filters, expand_filters,
) )
states[f'state/b{block_idx}/l{layer_idx}/pool_buffer'] = ( states[f'{prefix}_pool_buffer'] = (
input_shape[0], 1, 1, 1, expand_filters, input_shape[0], 1, 1, 1, expand_filters,
) )
states[f'state/b{block_idx}/l{layer_idx}/pool_frame_count'] = (1,) states[f'{prefix}_pool_frame_count'] = (1,)
if use_positional_encoding: if use_positional_encoding:
name = f'state/b{block_idx}/l{layer_idx}/pos_enc_frame_count' name = f'{prefix}_pos_enc_frame_count'
states[name] = (1,) states[name] = (1,)
if strides[1] != strides[2]: if strides[1] != strides[2]:
...@@ -618,10 +621,10 @@ class Movinet(tf.keras.Model): ...@@ -618,10 +621,10 @@ class Movinet(tf.keras.Model):
self._conv_type not in ['2plus1d', '3d_2plus1d']): self._conv_type not in ['2plus1d', '3d_2plus1d']):
num_downsamples += 1 num_downsamples += 1
elif isinstance(block, HeadSpec): elif isinstance(block, HeadSpec):
states['state/head/pool_buffer'] = ( states['state_head_pool_buffer'] = (
input_shape[0], 1, 1, 1, block.project_filters, input_shape[0], 1, 1, 1, block.project_filters,
) )
states['state/head/pool_frame_count'] = (1,) states['state_head_pool_frame_count'] = (1,)
return states return states
......
...@@ -478,7 +478,7 @@ class StreamBuffer(tf.keras.layers.Layer): ...@@ -478,7 +478,7 @@ class StreamBuffer(tf.keras.layers.Layer):
state_prefix = state_prefix if state_prefix is not None else '' state_prefix = state_prefix if state_prefix is not None else ''
self._state_prefix = state_prefix self._state_prefix = state_prefix
self._state_name = f'{state_prefix}/stream_buffer' self._state_name = f'{state_prefix}_stream_buffer'
self._buffer_size = buffer_size self._buffer_size = buffer_size
def get_config(self): def get_config(self):
...@@ -501,7 +501,7 @@ class StreamBuffer(tf.keras.layers.Layer): ...@@ -501,7 +501,7 @@ class StreamBuffer(tf.keras.layers.Layer):
inputs: the input tensor. inputs: the input tensor.
states: a dict of states such that, if any of the keys match for this states: a dict of states such that, if any of the keys match for this
layer, will overwrite the contents of the buffer(s). layer, will overwrite the contents of the buffer(s).
Expected keys include `state_prefix + '/stream_buffer'`. Expected keys include `state_prefix + '_stream_buffer'`.
Returns: Returns:
the output tensor and states the output tensor and states
......
...@@ -35,11 +35,11 @@ class MoViNetTest(parameterized.TestCase, tf.test.TestCase): ...@@ -35,11 +35,11 @@ class MoViNetTest(parameterized.TestCase, tf.test.TestCase):
endpoints, states = network(inputs) endpoints, states = network(inputs)
self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8]) self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8])
self.assertAllEqual(endpoints['b0/l0'].shape, [1, 8, 32, 32, 8]) self.assertAllEqual(endpoints['block0_layer0'].shape, [1, 8, 32, 32, 8])
self.assertAllEqual(endpoints['b1/l0'].shape, [1, 8, 16, 16, 32]) self.assertAllEqual(endpoints['block1_layer0'].shape, [1, 8, 16, 16, 32])
self.assertAllEqual(endpoints['b2/l0'].shape, [1, 8, 8, 8, 56]) self.assertAllEqual(endpoints['block2_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['b3/l0'].shape, [1, 8, 8, 8, 56]) self.assertAllEqual(endpoints['block3_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['b4/l0'].shape, [1, 8, 4, 4, 104]) self.assertAllEqual(endpoints['block4_layer0'].shape, [1, 8, 4, 4, 104])
self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480]) self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480])
self.assertNotEmpty(states) self.assertNotEmpty(states)
...@@ -59,11 +59,11 @@ class MoViNetTest(parameterized.TestCase, tf.test.TestCase): ...@@ -59,11 +59,11 @@ class MoViNetTest(parameterized.TestCase, tf.test.TestCase):
endpoints, new_states = backbone({**init_states, 'image': inputs}) endpoints, new_states = backbone({**init_states, 'image': inputs})
self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8]) self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8])
self.assertAllEqual(endpoints['b0/l0'].shape, [1, 8, 32, 32, 8]) self.assertAllEqual(endpoints['block0_layer0'].shape, [1, 8, 32, 32, 8])
self.assertAllEqual(endpoints['b1/l0'].shape, [1, 8, 16, 16, 32]) self.assertAllEqual(endpoints['block1_layer0'].shape, [1, 8, 16, 16, 32])
self.assertAllEqual(endpoints['b2/l0'].shape, [1, 8, 8, 8, 56]) self.assertAllEqual(endpoints['block2_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['b3/l0'].shape, [1, 8, 8, 8, 56]) self.assertAllEqual(endpoints['block3_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['b4/l0'].shape, [1, 8, 4, 4, 104]) self.assertAllEqual(endpoints['block4_layer0'].shape, [1, 8, 4, 4, 104])
self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480]) self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480])
self.assertNotEmpty(init_states) self.assertNotEmpty(init_states)
......
...@@ -22,6 +22,7 @@ from official.core import config_definitions as cfg ...@@ -22,6 +22,7 @@ from official.core import config_definitions as cfg
from official.core import exp_factory from official.core import exp_factory
from official.modeling import hyperparams from official.modeling import hyperparams
from official.modeling import optimization from official.modeling import optimization
from official.vision.beta.configs import common
from official.vision.beta.configs import maskrcnn from official.vision.beta.configs import maskrcnn
from official.vision.beta.configs import semantic_segmentation from official.vision.beta.configs import semantic_segmentation
...@@ -47,14 +48,31 @@ class Parser(maskrcnn.Parser): ...@@ -47,14 +48,31 @@ class Parser(maskrcnn.Parser):
segmentation_groundtruth_padded_size: List[int] = dataclasses.field( segmentation_groundtruth_padded_size: List[int] = dataclasses.field(
default_factory=list) default_factory=list)
segmentation_ignore_label: int = 255 segmentation_ignore_label: int = 255
panoptic_ignore_label: int = 0
# Setting this to true will enable parsing category_mask and instance_mask.
include_panoptic_masks: bool = True
@dataclasses.dataclass
class TfExampleDecoder(common.TfExampleDecoder):
"""A simple TF Example decoder config."""
# Setting this to true will enable decoding category_mask and instance_mask.
include_panoptic_masks: bool = True
@dataclasses.dataclass
class DataDecoder(common.DataDecoder):
"""Data decoder config."""
simple_decoder: TfExampleDecoder = TfExampleDecoder()
@dataclasses.dataclass @dataclasses.dataclass
class DataConfig(maskrcnn.DataConfig): class DataConfig(maskrcnn.DataConfig):
"""Input config for training.""" """Input config for training."""
decoder: DataDecoder = DataDecoder()
parser: Parser = Parser() parser: Parser = Parser()
# @dataclasses.dataclass
@dataclasses.dataclass @dataclasses.dataclass
class PanopticSegmentationGenerator(hyperparams.Config): class PanopticSegmentationGenerator(hyperparams.Config):
output_size: List[int] = dataclasses.field( output_size: List[int] = dataclasses.field(
......
...@@ -24,25 +24,51 @@ from official.vision.beta.ops import preprocess_ops ...@@ -24,25 +24,51 @@ from official.vision.beta.ops import preprocess_ops
class TfExampleDecoder(tf_example_decoder.TfExampleDecoder): class TfExampleDecoder(tf_example_decoder.TfExampleDecoder):
"""Tensorflow Example proto decoder.""" """Tensorflow Example proto decoder."""
def __init__(self, regenerate_source_id, mask_binarize_threshold): def __init__(self, regenerate_source_id,
mask_binarize_threshold, include_panoptic_masks):
super(TfExampleDecoder, self).__init__( super(TfExampleDecoder, self).__init__(
include_mask=True, include_mask=True,
regenerate_source_id=regenerate_source_id, regenerate_source_id=regenerate_source_id,
mask_binarize_threshold=None) mask_binarize_threshold=None)
self._segmentation_keys_to_features = {
self._include_panoptic_masks = include_panoptic_masks
keys_to_features = {
'image/segmentation/class/encoded': 'image/segmentation/class/encoded':
tf.io.FixedLenFeature((), tf.string, default_value='') tf.io.FixedLenFeature((), tf.string, default_value='')}
}
if include_panoptic_masks:
keys_to_features.update({
'image/panoptic/category_mask':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'image/panoptic/instance_mask':
tf.io.FixedLenFeature((), tf.string, default_value='')})
self._segmentation_keys_to_features = keys_to_features
def decode(self, serialized_example): def decode(self, serialized_example):
decoded_tensors = super(TfExampleDecoder, self).decode(serialized_example) decoded_tensors = super(TfExampleDecoder, self).decode(serialized_example)
segmentation_parsed_tensors = tf.io.parse_single_example( parsed_tensors = tf.io.parse_single_example(
serialized_example, self._segmentation_keys_to_features) serialized_example, self._segmentation_keys_to_features)
segmentation_mask = tf.io.decode_image( segmentation_mask = tf.io.decode_image(
segmentation_parsed_tensors['image/segmentation/class/encoded'], parsed_tensors['image/segmentation/class/encoded'],
channels=1) channels=1)
segmentation_mask.set_shape([None, None, 1]) segmentation_mask.set_shape([None, None, 1])
decoded_tensors.update({'groundtruth_segmentation_mask': segmentation_mask}) decoded_tensors.update({'groundtruth_segmentation_mask': segmentation_mask})
if self._include_panoptic_masks:
category_mask = tf.io.decode_image(
parsed_tensors['image/panoptic/category_mask'],
channels=1)
instance_mask = tf.io.decode_image(
parsed_tensors['image/panoptic/instance_mask'],
channels=1)
category_mask.set_shape([None, None, 1])
instance_mask.set_shape([None, None, 1])
decoded_tensors.update({
'groundtruth_panoptic_category_mask':
category_mask,
'groundtruth_panoptic_instance_mask':
instance_mask})
return decoded_tensors return decoded_tensors
...@@ -69,6 +95,8 @@ class Parser(maskrcnn_input.Parser): ...@@ -69,6 +95,8 @@ class Parser(maskrcnn_input.Parser):
segmentation_resize_eval_groundtruth=True, segmentation_resize_eval_groundtruth=True,
segmentation_groundtruth_padded_size=None, segmentation_groundtruth_padded_size=None,
segmentation_ignore_label=255, segmentation_ignore_label=255,
panoptic_ignore_label=0,
include_panoptic_masks=True,
dtype='float32'): dtype='float32'):
"""Initializes parameters for parsing annotations in the dataset. """Initializes parameters for parsing annotations in the dataset.
...@@ -106,8 +134,12 @@ class Parser(maskrcnn_input.Parser): ...@@ -106,8 +134,12 @@ class Parser(maskrcnn_input.Parser):
segmentation_groundtruth_padded_size: `Tensor` or `list` for [height, segmentation_groundtruth_padded_size: `Tensor` or `list` for [height,
width]. When resize_eval_groundtruth is set to False, the groundtruth width]. When resize_eval_groundtruth is set to False, the groundtruth
masks are padded to this size. masks are padded to this size.
segmentation_ignore_label: `int` the pixel with ignore label will not used segmentation_ignore_label: `int` the pixels with ignore label will not be
for training and evaluation. used for training and evaluation.
panoptic_ignore_label: `int` the pixels with ignore label will not be used
by the PQ evaluator.
include_panoptic_masks: `bool`, if True, category_mask and instance_mask
will be parsed. Set this to true if PQ evaluator is enabled.
dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}. dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
""" """
super(Parser, self).__init__( super(Parser, self).__init__(
...@@ -139,6 +171,8 @@ class Parser(maskrcnn_input.Parser): ...@@ -139,6 +171,8 @@ class Parser(maskrcnn_input.Parser):
'specified when segmentation_resize_eval_groundtruth is False.') 'specified when segmentation_resize_eval_groundtruth is False.')
self._segmentation_groundtruth_padded_size = segmentation_groundtruth_padded_size self._segmentation_groundtruth_padded_size = segmentation_groundtruth_padded_size
self._segmentation_ignore_label = segmentation_ignore_label self._segmentation_ignore_label = segmentation_ignore_label
self._panoptic_ignore_label = panoptic_ignore_label
self._include_panoptic_masks = include_panoptic_masks
def _parse_train_data(self, data): def _parse_train_data(self, data):
"""Parses data for training. """Parses data for training.
...@@ -250,39 +284,54 @@ class Parser(maskrcnn_input.Parser): ...@@ -250,39 +284,54 @@ class Parser(maskrcnn_input.Parser):
shape [height_l, width_l, 4] representing anchor boxes at each shape [height_l, width_l, 4] representing anchor boxes at each
level. level.
""" """
segmentation_mask = tf.cast( def _process_mask(mask, ignore_label, image_info):
data['groundtruth_segmentation_mask'], tf.float32) mask = tf.cast(mask, dtype=tf.float32)
segmentation_mask = tf.reshape( mask = tf.reshape(mask, shape=[1, data['height'], data['width'], 1])
segmentation_mask, shape=[1, data['height'], data['width'], 1]) mask += 1
segmentation_mask += 1
if self._segmentation_resize_eval_groundtruth:
# Resizes eval masks to match input image sizes. In that case, mean IoU
# is computed on output_size not the original size of the images.
image_scale = image_info[2, :]
offset = image_info[3, :]
mask = preprocess_ops.resize_and_crop_masks(
mask, image_scale, self._output_size, offset)
else:
mask = tf.image.pad_to_bounding_box(
mask, 0, 0,
self._segmentation_groundtruth_padded_size[0],
self._segmentation_groundtruth_padded_size[1])
mask -= 1
# Assign ignore label to the padded region.
mask = tf.where(
tf.equal(mask, -1),
ignore_label * tf.ones_like(mask),
mask)
mask = tf.squeeze(mask, axis=0)
return mask
image, labels = super(Parser, self)._parse_eval_data(data) image, labels = super(Parser, self)._parse_eval_data(data)
image_info = labels['image_info']
if self._segmentation_resize_eval_groundtruth: segmentation_mask = _process_mask(
# Resizes eval masks to match input image sizes. In that case, mean IoU data['groundtruth_segmentation_mask'],
# is computed on output_size not the original size of the images. self._segmentation_ignore_label, image_info)
image_info = labels['image_info']
image_scale = image_info[2, :]
offset = image_info[3, :]
segmentation_mask = preprocess_ops.resize_and_crop_masks(
segmentation_mask, image_scale, self._output_size, offset)
else:
segmentation_mask = tf.image.pad_to_bounding_box(
segmentation_mask, 0, 0,
self._segmentation_groundtruth_padded_size[0],
self._segmentation_groundtruth_padded_size[1])
segmentation_mask -= 1
# Assign ignore label to the padded region.
segmentation_mask = tf.where(
tf.equal(segmentation_mask, -1),
self._segmentation_ignore_label * tf.ones_like(segmentation_mask),
segmentation_mask)
segmentation_mask = tf.squeeze(segmentation_mask, axis=0)
segmentation_valid_mask = tf.not_equal( segmentation_valid_mask = tf.not_equal(
segmentation_mask, self._segmentation_ignore_label) segmentation_mask, self._segmentation_ignore_label)
labels['groundtruths'].update({ labels['groundtruths'].update({
'gt_segmentation_mask': segmentation_mask, 'gt_segmentation_mask': segmentation_mask,
'gt_segmentation_valid_mask': segmentation_valid_mask}) 'gt_segmentation_valid_mask': segmentation_valid_mask})
if self._include_panoptic_masks:
panoptic_category_mask = _process_mask(
data['groundtruth_panoptic_category_mask'],
self._panoptic_ignore_label, image_info)
panoptic_instance_mask = _process_mask(
data['groundtruth_panoptic_instance_mask'],
self._panoptic_ignore_label, image_info)
labels['groundtruths'].update({
'gt_panoptic_category_mask': panoptic_category_mask,
'gt_panoptic_instance_mask': panoptic_instance_mask})
return image, labels return image, labels
...@@ -493,7 +493,7 @@ class PanopticMaskRCNNModelTest(parameterized.TestCase, tf.test.TestCase): ...@@ -493,7 +493,7 @@ class PanopticMaskRCNNModelTest(parameterized.TestCase, tf.test.TestCase):
ckpt.save(os.path.join(save_dir, 'ckpt')) ckpt.save(os.path.join(save_dir, 'ckpt'))
partial_ckpt = tf.train.Checkpoint(backbone=backbone) partial_ckpt = tf.train.Checkpoint(backbone=backbone)
partial_ckpt.restore(tf.train.latest_checkpoint( partial_ckpt.read(tf.train.latest_checkpoint(
save_dir)).expect_partial().assert_existing_objects_matched() save_dir)).expect_partial().assert_existing_objects_matched()
partial_ckpt_mask = tf.train.Checkpoint( partial_ckpt_mask = tf.train.Checkpoint(
......
...@@ -78,14 +78,14 @@ class PanopticMaskRCNNTask(maskrcnn.MaskRCNNTask): ...@@ -78,14 +78,14 @@ class PanopticMaskRCNNTask(maskrcnn.MaskRCNNTask):
checkpoint_path = _get_checkpoint_path( checkpoint_path = _get_checkpoint_path(
self.task_config.init_checkpoint) self.task_config.init_checkpoint)
ckpt = tf.train.Checkpoint(**model.checkpoint_items) ckpt = tf.train.Checkpoint(**model.checkpoint_items)
status = ckpt.restore(checkpoint_path) status = ckpt.read(checkpoint_path)
status.assert_consumed() status.expect_partial().assert_existing_objects_matched()
elif init_module == 'backbone': elif init_module == 'backbone':
checkpoint_path = _get_checkpoint_path( checkpoint_path = _get_checkpoint_path(
self.task_config.init_checkpoint) self.task_config.init_checkpoint)
ckpt = tf.train.Checkpoint(backbone=model.backbone) ckpt = tf.train.Checkpoint(backbone=model.backbone)
status = ckpt.restore(checkpoint_path) status = ckpt.read(checkpoint_path)
status.expect_partial().assert_existing_objects_matched() status.expect_partial().assert_existing_objects_matched()
elif init_module == 'segmentation_backbone': elif init_module == 'segmentation_backbone':
...@@ -93,7 +93,7 @@ class PanopticMaskRCNNTask(maskrcnn.MaskRCNNTask): ...@@ -93,7 +93,7 @@ class PanopticMaskRCNNTask(maskrcnn.MaskRCNNTask):
self.task_config.segmentation_init_checkpoint) self.task_config.segmentation_init_checkpoint)
ckpt = tf.train.Checkpoint( ckpt = tf.train.Checkpoint(
segmentation_backbone=model.segmentation_backbone) segmentation_backbone=model.segmentation_backbone)
status = ckpt.restore(checkpoint_path) status = ckpt.read(checkpoint_path)
status.expect_partial().assert_existing_objects_matched() status.expect_partial().assert_existing_objects_matched()
elif init_module == 'segmentation_decoder': elif init_module == 'segmentation_decoder':
...@@ -101,7 +101,7 @@ class PanopticMaskRCNNTask(maskrcnn.MaskRCNNTask): ...@@ -101,7 +101,7 @@ class PanopticMaskRCNNTask(maskrcnn.MaskRCNNTask):
self.task_config.segmentation_init_checkpoint) self.task_config.segmentation_init_checkpoint)
ckpt = tf.train.Checkpoint( ckpt = tf.train.Checkpoint(
segmentation_decoder=model.segmentation_decoder) segmentation_decoder=model.segmentation_decoder)
status = ckpt.restore(checkpoint_path) status = ckpt.read(checkpoint_path)
status.expect_partial().assert_existing_objects_matched() status.expect_partial().assert_existing_objects_matched()
else: else:
...@@ -122,7 +122,8 @@ class PanopticMaskRCNNTask(maskrcnn.MaskRCNNTask): ...@@ -122,7 +122,8 @@ class PanopticMaskRCNNTask(maskrcnn.MaskRCNNTask):
if params.decoder.type == 'simple_decoder': if params.decoder.type == 'simple_decoder':
decoder = panoptic_maskrcnn_input.TfExampleDecoder( decoder = panoptic_maskrcnn_input.TfExampleDecoder(
regenerate_source_id=decoder_cfg.regenerate_source_id, regenerate_source_id=decoder_cfg.regenerate_source_id,
mask_binarize_threshold=decoder_cfg.mask_binarize_threshold) mask_binarize_threshold=decoder_cfg.mask_binarize_threshold,
include_panoptic_masks=decoder_cfg.include_panoptic_masks)
else: else:
raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type)) raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))
...@@ -148,7 +149,9 @@ class PanopticMaskRCNNTask(maskrcnn.MaskRCNNTask): ...@@ -148,7 +149,9 @@ class PanopticMaskRCNNTask(maskrcnn.MaskRCNNTask):
.segmentation_resize_eval_groundtruth, .segmentation_resize_eval_groundtruth,
segmentation_groundtruth_padded_size=params.parser segmentation_groundtruth_padded_size=params.parser
.segmentation_groundtruth_padded_size, .segmentation_groundtruth_padded_size,
segmentation_ignore_label=params.parser.segmentation_ignore_label) segmentation_ignore_label=params.parser.segmentation_ignore_label,
panoptic_ignore_label=params.parser.panoptic_ignore_label,
include_panoptic_masks=params.parser.include_panoptic_masks)
reader = input_reader_factory.input_reader_generator( reader = input_reader_factory.input_reader_generator(
params, params,
......
...@@ -12,20 +12,6 @@ ...@@ -12,20 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""All necessary imports for registration.""" """All necessary imports for registration."""
# pylint: disable=unused-import # pylint: disable=unused-import
......
runtime:
distribution_strategy: tpu
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: ''
model:
backbone:
resnet:
model_id: 50
type: resnet
projection_head:
ft_proj_idx: 1
num_proj_layers: 3
proj_output_dim: 128
backbone_trainable: true
heads: !!python/tuple
# Define heads for the PRETRAIN networks here
- task_name: pretrain_imagenet
mode: pretrain
# # Define heads for the FINETUNE networks here
- task_name: finetune_imagenet_10percent
mode: finetune
supervised_head:
num_classes: 1001
zero_init: true
input_size: [224, 224, 3]
l2_weight_decay: 0.0
norm_activation:
norm_epsilon: 1.0e-05
norm_momentum: 0.9
use_sync_bn: true
task_routines: !!python/tuple
# Define TASK CONFIG for the PRETRAIN networks here
- task_name: pretrain_imagenet
task_weight: 30.0
task_config:
evaluation:
one_hot: true
top_k: 5
loss:
l2_weight_decay: 0.0
projection_norm: true
temperature: 0.1
model:
input_size: [224, 224, 3]
mode: pretrain
train_data:
input_path: /readahead/200M/placer/prod/home/distbelief/imagenet-tensorflow/imagenet-2012-tfrecord/train*
input_set_label_to_zero: true # Set labels to zeros to double confirm that no label is used during pretrain
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
parser:
aug_rand_hflip: true
mode: pretrain
decoder:
decode_label: true
validation_data:
input_path: /readahead/200M/placer/prod/home/distbelief/imagenet-tensorflow/imagenet-2012-tfrecord/valid*
is_training: false
global_batch_size: 2048
dtype: 'bfloat16'
drop_remainder: false
parser:
mode: pretrain
decoder:
decode_label: true
# Define TASK CONFIG for the FINETUNE Networks here
- task_name: finetune_imagenet_10percent
task_weight: 1.0
task_config:
evaluation:
one_hot: true
top_k: 5
loss:
l2_weight_decay: 0.0
label_smoothing: 0.0
one_hot: true
model:
input_size: [224, 224, 3]
mode: finetune
supervised_head:
num_classes: 1001
zero_init: true
train_data:
tfds_name: 'imagenet2012_subset/10pct'
tfds_split: 'train'
input_path: ''
is_training: true
global_batch_size: 1024
dtype: 'bfloat16'
parser:
aug_rand_hflip: true
mode: finetune
decoder:
decode_label: true
validation_data:
tfds_name: 'imagenet2012_subset/10pct'
tfds_split: 'validation'
input_path: ''
is_training: false
global_batch_size: 2048
dtype: 'bfloat16'
drop_remainder: false
parser:
mode: finetune
decoder:
decode_label: true
trainer:
trainer_type: interleaving
task_sampler:
proportional:
alpha: 1.0
type: proportional
train_steps: 32000 # 100 epochs
validation_steps: 24 # NUM_EXAMPLES (50000) // global_batch_size
validation_interval: 625
steps_per_loop: 625 # NUM_EXAMPLES (1281167) // global_batch_size
summary_interval: 625
checkpoint_interval: 625
max_to_keep: 3
optimizer_config:
learning_rate:
cosine:
decay_steps: 32000
initial_learning_rate: 4.8
type: cosine
optimizer:
lars:
exclude_from_weight_decay: [batch_normalization, bias]
momentum: 0.9
weight_decay_rate: 1.0e-06
type: lars
warmup:
linear:
name: linear
warmup_steps: 3200
type: linear
...@@ -29,6 +29,7 @@ from official.vision.beta.projects.simclr.modeling import simclr_model ...@@ -29,6 +29,7 @@ from official.vision.beta.projects.simclr.modeling import simclr_model
@dataclasses.dataclass @dataclasses.dataclass
class SimCLRMTHeadConfig(hyperparams.Config): class SimCLRMTHeadConfig(hyperparams.Config):
"""Per-task specific configs.""" """Per-task specific configs."""
task_name: str = 'task_name'
# Supervised head is required for finetune, but optional for pretrain. # Supervised head is required for finetune, but optional for pretrain.
supervised_head: simclr_configs.SupervisedHead = simclr_configs.SupervisedHead( supervised_head: simclr_configs.SupervisedHead = simclr_configs.SupervisedHead(
num_classes=1001) num_classes=1001)
...@@ -50,6 +51,9 @@ class SimCLRMTModelConfig(hyperparams.Config): ...@@ -50,6 +51,9 @@ class SimCLRMTModelConfig(hyperparams.Config):
# L2 weight decay is used in the model, not in task. # L2 weight decay is used in the model, not in task.
# Note that this can not be used together with lars optimizer. # Note that this can not be used together with lars optimizer.
l2_weight_decay: float = 0.0 l2_weight_decay: float = 0.0
init_checkpoint: str = ''
# backbone_projection or backbone
init_checkpoint_modules: str = 'backbone_projection'
@exp_factory.register_config_factory('multitask_simclr') @exp_factory.register_config_factory('multitask_simclr')
...@@ -57,14 +61,17 @@ def multitask_simclr() -> multitask_configs.MultiTaskExperimentConfig: ...@@ -57,14 +61,17 @@ def multitask_simclr() -> multitask_configs.MultiTaskExperimentConfig:
return multitask_configs.MultiTaskExperimentConfig( return multitask_configs.MultiTaskExperimentConfig(
task=multitask_configs.MultiTaskConfig( task=multitask_configs.MultiTaskConfig(
model=SimCLRMTModelConfig( model=SimCLRMTModelConfig(
heads=(SimCLRMTHeadConfig(mode=simclr_model.PRETRAIN), heads=(SimCLRMTHeadConfig(
SimCLRMTHeadConfig(mode=simclr_model.FINETUNE))), task_name='pretrain_simclr', mode=simclr_model.PRETRAIN),
SimCLRMTHeadConfig(
task_name='finetune_simclr',
mode=simclr_model.FINETUNE))),
task_routines=(multitask_configs.TaskRoutine( task_routines=(multitask_configs.TaskRoutine(
task_name=simclr_model.PRETRAIN, task_name='pretrain_simclr',
task_config=simclr_configs.SimCLRPretrainTask(), task_config=simclr_configs.SimCLRPretrainTask(),
task_weight=2.0), task_weight=2.0),
multitask_configs.TaskRoutine( multitask_configs.TaskRoutine(
task_name=simclr_model.FINETUNE, task_name='finetune_simclr',
task_config=simclr_configs.SimCLRFinetuneTask(), task_config=simclr_configs.SimCLRFinetuneTask(),
task_weight=1.0))), task_weight=1.0))),
trainer=multitask_configs.MultiTaskTrainerConfig()) trainer=multitask_configs.MultiTaskTrainerConfig())
...@@ -12,27 +12,11 @@ ...@@ -12,27 +12,11 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""SimCLR configurations.""" """SimCLR configurations."""
import dataclasses
import os import os
from typing import List, Optional from typing import List, Optional
import dataclasses
from official.core import config_definitions as cfg from official.core import config_definitions as cfg
from official.core import exp_factory from official.core import exp_factory
from official.modeling import hyperparams from official.modeling import hyperparams
...@@ -73,6 +57,9 @@ class DataConfig(cfg.DataConfig): ...@@ -73,6 +57,9 @@ class DataConfig(cfg.DataConfig):
# simclr specific configs # simclr specific configs
parser: Parser = Parser() parser: Parser = Parser()
decoder: Decoder = Decoder() decoder: Decoder = Decoder()
# Useful when doing a sanity check that we absolutely use no labels while
# pretrain by setting labels to zeros (default = False, keep original labels)
input_set_label_to_zero: bool = False
@dataclasses.dataclass @dataclasses.dataclass
...@@ -115,9 +102,7 @@ class SimCLRModel(hyperparams.Config): ...@@ -115,9 +102,7 @@ class SimCLRModel(hyperparams.Config):
backbone: backbones.Backbone = backbones.Backbone( backbone: backbones.Backbone = backbones.Backbone(
type='resnet', resnet=backbones.ResNet()) type='resnet', resnet=backbones.ResNet())
projection_head: ProjectionHead = ProjectionHead( projection_head: ProjectionHead = ProjectionHead(
proj_output_dim=128, proj_output_dim=128, num_proj_layers=3, ft_proj_idx=1)
num_proj_layers=3,
ft_proj_idx=1)
supervised_head: SupervisedHead = SupervisedHead(num_classes=1001) supervised_head: SupervisedHead = SupervisedHead(num_classes=1001)
norm_activation: common.NormActivation = common.NormActivation( norm_activation: common.NormActivation = common.NormActivation(
norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False) norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)
...@@ -201,9 +186,7 @@ def simclr_pretraining_imagenet() -> cfg.ExperimentConfig: ...@@ -201,9 +186,7 @@ def simclr_pretraining_imagenet() -> cfg.ExperimentConfig:
backbone=backbones.Backbone( backbone=backbones.Backbone(
type='resnet', resnet=backbones.ResNet(model_id=50)), type='resnet', resnet=backbones.ResNet(model_id=50)),
projection_head=ProjectionHead( projection_head=ProjectionHead(
proj_output_dim=128, proj_output_dim=128, num_proj_layers=3, ft_proj_idx=1),
num_proj_layers=3,
ft_proj_idx=1),
supervised_head=SupervisedHead(num_classes=1001), supervised_head=SupervisedHead(num_classes=1001),
norm_activation=common.NormActivation( norm_activation=common.NormActivation(
norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=True)), norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=True)),
...@@ -233,10 +216,13 @@ def simclr_pretraining_imagenet() -> cfg.ExperimentConfig: ...@@ -233,10 +216,13 @@ def simclr_pretraining_imagenet() -> cfg.ExperimentConfig:
'optimizer': { 'optimizer': {
'type': 'lars', 'type': 'lars',
'lars': { 'lars': {
'momentum': 0.9, 'momentum':
'weight_decay_rate': 0.000001, 0.9,
'weight_decay_rate':
0.000001,
'exclude_from_weight_decay': [ 'exclude_from_weight_decay': [
'batch_normalization', 'bias'] 'batch_normalization', 'bias'
]
} }
}, },
'learning_rate': { 'learning_rate': {
...@@ -278,11 +264,8 @@ def simclr_finetuning_imagenet() -> cfg.ExperimentConfig: ...@@ -278,11 +264,8 @@ def simclr_finetuning_imagenet() -> cfg.ExperimentConfig:
backbone=backbones.Backbone( backbone=backbones.Backbone(
type='resnet', resnet=backbones.ResNet(model_id=50)), type='resnet', resnet=backbones.ResNet(model_id=50)),
projection_head=ProjectionHead( projection_head=ProjectionHead(
proj_output_dim=128, proj_output_dim=128, num_proj_layers=3, ft_proj_idx=1),
num_proj_layers=3, supervised_head=SupervisedHead(num_classes=1001, zero_init=True),
ft_proj_idx=1),
supervised_head=SupervisedHead(
num_classes=1001, zero_init=True),
norm_activation=common.NormActivation( norm_activation=common.NormActivation(
norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)), norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
loss=ClassificationLosses(), loss=ClassificationLosses(),
...@@ -311,10 +294,13 @@ def simclr_finetuning_imagenet() -> cfg.ExperimentConfig: ...@@ -311,10 +294,13 @@ def simclr_finetuning_imagenet() -> cfg.ExperimentConfig:
'optimizer': { 'optimizer': {
'type': 'lars', 'type': 'lars',
'lars': { 'lars': {
'momentum': 0.9, 'momentum':
'weight_decay_rate': 0.0, 0.9,
'weight_decay_rate':
0.0,
'exclude_from_weight_decay': [ 'exclude_from_weight_decay': [
'batch_normalization', 'bias'] 'batch_normalization', 'bias'
]
} }
}, },
'learning_rate': { 'learning_rate': {
......
...@@ -12,23 +12,7 @@ ...@@ -12,23 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3 """Tests for SimCLR config."""
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for simclr."""
# pylint: disable=unused-import
from absl.testing import parameterized from absl.testing import parameterized
import tensorflow as tf import tensorflow as tf
......
...@@ -12,20 +12,6 @@ ...@@ -12,20 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Preprocessing ops.""" """Preprocessing ops."""
import functools import functools
import tensorflow as tf import tensorflow as tf
......
...@@ -12,20 +12,6 @@ ...@@ -12,20 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Data parser and processing for SimCLR. """Data parser and processing for SimCLR.
For pre-training: For pre-training:
......
...@@ -12,21 +12,7 @@ ...@@ -12,21 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. """SimCLR prediction heads."""
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Dense prediction heads."""
from typing import Text, Optional from typing import Text, Optional
......
...@@ -12,22 +12,6 @@ ...@@ -12,22 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from absl.testing import parameterized from absl.testing import parameterized
import numpy as np import numpy as np
......
...@@ -12,21 +12,6 @@ ...@@ -12,21 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contrastive loss functions.""" """Contrastive loss functions."""
import functools import functools
......
...@@ -12,22 +12,6 @@ ...@@ -12,22 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from absl.testing import parameterized from absl.testing import parameterized
import numpy as np import numpy as np
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment