"examples/pytorch/vscode:/vscode.git/clone" did not exist on "b3097725f21f3ef0591cc928a888afb9b37ba6c3"
Commit c8e6faf7 authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 431756117
parent 13a5e4fb
# ResNet-RS-152 ImageNet classification. 83.1% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [256, 256, 3]
backbone:
type: 'resnet'
resnet:
model_id: 152
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.0
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-200 ImageNet classification. 83.5% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [256, 256, 3]
backbone:
type: 'resnet'
resnet:
model_id: 200
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.1
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-270 ImageNet classification. 83.6% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [256, 256, 3]
backbone:
type: 'resnet'
resnet:
model_id: 270
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.1
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-350 ImageNet classification. 83.7% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [256, 256, 3]
backbone:
type: 'resnet'
resnet:
model_id: 350
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.1
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-350 ImageNet classification. 84.2% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [320, 320, 3]
backbone:
type: 'resnet'
resnet:
model_id: 350
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.1
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.4
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [320, 320, 3]
backbone:
type: 'resnet'
resnet:
model_id: 420
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.1
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.4
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 15
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# ResNet-RS-50 ImageNet classification. 79.1% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [160, 160, 3]
backbone:
type: 'resnet'
resnet:
model_id: 50
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.0
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 10
validation_data:
input_path: 'imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 51.9%, mask mAP: 45.0% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.5
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 4.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [1280, 1280, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '143'
type: 'spinenet'
decoder:
type: 'identity'
detection_head:
cascade_class_ensemble: true
class_agnostic_bbox_pred: true
rpn_head:
num_convs: 2
num_filters: 256
roi_sampler:
cascade_iou_thresholds: [0.7]
foreground_iou_threshold: 0.6
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
activation: 'swish'
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# Expect to reach: box mAP: 49.3%, mask mAP: 43.4% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.0
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 4.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [1280, 1280, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '143'
type: 'spinenet'
decoder:
type: 'identity'
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 46.4%, mask mAP: 40.0% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.0
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 3.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [640, 640, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '49'
type: 'spinenet'
decoder:
type: 'identity'
detection_head:
cascade_class_ensemble: true
class_agnostic_bbox_pred: true
rpn_head:
num_convs: 2
num_filters: 256
roi_sampler:
cascade_iou_thresholds: [0.7]
foreground_iou_threshold: 0.6
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
activation: 'swish'
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# Expect to reach: box mAP: 43.2%, mask mAP: 38.3% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.0
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 3.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [640, 640, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '49'
type: 'spinenet'
decoder:
type: 'identity'
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# --experiment_type=cascadercnn_spinenet_coco
# Expect to reach: box mAP: 51.9%, mask mAP: 45.0% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.5
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 4.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [1024, 1024, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '96'
type: 'spinenet'
decoder:
type: 'identity'
detection_head:
cascade_class_ensemble: true
class_agnostic_bbox_pred: true
rpn_head:
num_convs: 2
num_filters: 256
roi_sampler:
cascade_iou_thresholds: [0.7]
foreground_iou_threshold: 0.6
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
activation: 'swish'
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# Expect to reach: box mAP: 48.1%, mask mAP: 42.4% on COCO
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.1
aug_scale_max: 2.0
losses:
l2_weight_decay: 0.00004
model:
anchor:
anchor_size: 3.0
num_scales: 3
min_level: 3
max_level: 7
input_size: [1024, 1024, 3]
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '96'
type: 'spinenet'
decoder:
type: 'identity'
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 231000
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# Expect to reach: box mAP: 42.3%, mask mAP: 37.6% on COCO
task:
init_checkpoint: null
train_data:
global_batch_size: 256
parser:
aug_rand_hflip: true
aug_scale_min: 0.5
aug_scale_max: 2.0
losses:
l2_weight_decay: 0.00008
model:
anchor:
anchor_size: 3.0
min_level: 3
max_level: 7
input_size: [640, 640, 3]
norm_activation:
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
detection_generator:
pre_nms_top_k: 1000
trainer:
train_steps: 162050
optimizer_config:
learning_rate:
type: 'stepwise'
stepwise:
boundaries: [148160, 157420]
values: [0.32, 0.032, 0.0032]
warmup:
type: 'linear'
linear:
warmup_steps: 2000
warmup_learning_rate: 0.0067
# --experiment_type=retinanet_mobile_coco
# COCO AP 27.0%
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
losses:
l2_weight_decay: 3.0e-05
model:
anchor:
anchor_size: 3
aspect_ratios: [0.5, 1.0, 2.0]
num_scales: 3
backbone:
mobilenet:
model_id: 'MobileDetCPU'
filter_size_scale: 1.0
type: 'mobiledet'
decoder:
type: 'fpn'
fpn:
num_filters: 128
use_separable_conv: true
head:
num_convs: 4
num_filters: 128
use_separable_conv: true
input_size: [320 320, 3]
max_level: 6
min_level: 3
norm_activation:
activation: 'relu6'
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
train_data:
dtype: 'bfloat16'
global_batch_size: 256
is_training: true
parser:
aug_rand_hflip: true
aug_scale_max: 2.0
aug_scale_min: 0.5
validation_data:
dtype: 'bfloat16'
global_batch_size: 8
is_training: false
trainer:
optimizer_config:
learning_rate:
stepwise:
boundaries: [263340, 272580]
values: [0.32, 0.032, 0.0032]
type: 'stepwise'
warmup:
linear:
warmup_learning_rate: 0.0067
warmup_steps: 2000
steps_per_loop: 462
train_steps: 277200
validation_interval: 462
validation_steps: 625
# --experiment_type=retinanet_mobile_coco
# COCO AP 23.5%
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
losses:
l2_weight_decay: 3.0e-05
model:
anchor:
anchor_size: 3
aspect_ratios: [0.5, 1.0, 2.0]
num_scales: 3
backbone:
mobilenet:
model_id: 'MobileNetV2'
filter_size_scale: 1.0
type: 'mobilenet'
decoder:
type: 'fpn'
fpn:
num_filters: 128
use_separable_conv: true
head:
num_convs: 4
num_filters: 128
use_separable_conv: true
input_size: [256, 256, 3]
max_level: 7
min_level: 3
norm_activation:
activation: 'relu6'
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
train_data:
dtype: 'bfloat16'
global_batch_size: 256
is_training: true
parser:
aug_rand_hflip: true
aug_scale_max: 2.0
aug_scale_min: 0.5
validation_data:
dtype: 'bfloat16'
global_batch_size: 8
is_training: false
trainer:
optimizer_config:
learning_rate:
stepwise:
boundaries: [263340, 272580]
values: [0.32, 0.032, 0.0032]
type: 'stepwise'
warmup:
linear:
warmup_learning_rate: 0.0067
warmup_steps: 2000
steps_per_loop: 462
train_steps: 277200
validation_interval: 462
validation_steps: 625
# SpineNet-143 COCO detection with protocal C config. Expecting 50.0% AP.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
losses:
l2_weight_decay: 4.0e-05
model:
anchor:
anchor_size: 4
aspect_ratios: [0.5, 1.0, 2.0]
num_scales: 3
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '143'
type: 'spinenet'
decoder:
type: 'identity'
head:
num_convs: 4
num_filters: 256
input_size: [1280, 1280, 3]
max_level: 7
min_level: 3
norm_activation:
activation: 'swish'
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
train_data:
dtype: 'bfloat16'
global_batch_size: 256
is_training: true
parser:
aug_rand_hflip: true
aug_scale_max: 2.0
aug_scale_min: 0.1
validation_data:
dtype: 'bfloat16'
global_batch_size: 8
is_training: false
trainer:
checkpoint_interval: 462
optimizer_config:
learning_rate:
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
type: 'stepwise'
warmup:
linear:
warmup_learning_rate: 0.0067
warmup_steps: 2000
steps_per_loop: 462
train_steps: 231000
validation_interval: 462
validation_steps: 625
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
losses:
l2_weight_decay: 4.0e-05
model:
anchor:
anchor_size: 4
aspect_ratios: [0.5, 1.0, 2.0]
num_scales: 3
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '190'
type: 'spinenet'
decoder:
type: 'identity'
head:
num_convs: 7
num_filters: 512
input_size: [1280, 1280, 3]
max_level: 7
min_level: 3
norm_activation:
activation: 'swish'
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
train_data:
dtype: 'bfloat16'
global_batch_size: 256
is_training: true
parser:
aug_rand_hflip: true
aug_scale_max: 2.0
aug_scale_min: 0.1
validation_data:
dtype: 'bfloat16'
global_batch_size: 8
is_training: false
trainer:
checkpoint_interval: 462
optimizer_config:
learning_rate:
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
type: 'stepwise'
warmup:
linear:
warmup_learning_rate: 0.0067
warmup_steps: 2000
steps_per_loop: 462
train_steps: 231000
validation_interval: 462
validation_steps: 625
# --experiment_type=retinanet_mobile_coco
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
losses:
l2_weight_decay: 3.0e-05
model:
anchor:
anchor_size: 3
aspect_ratios: [0.5, 1.0, 2.0]
num_scales: 3
backbone:
spinenet_mobile:
stochastic_depth_drop_rate: 0.2
model_id: '49'
se_ratio: 0.2
type: 'spinenet_mobile'
decoder:
type: 'identity'
head:
num_convs: 4
num_filters: 48
use_separable_conv: true
input_size: [384, 384, 3]
max_level: 7
min_level: 3
norm_activation:
activation: 'swish'
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
train_data:
dtype: 'bfloat16'
global_batch_size: 256
is_training: true
parser:
aug_rand_hflip: true
aug_scale_max: 2.0
aug_scale_min: 0.5
validation_data:
dtype: 'bfloat16'
global_batch_size: 8
is_training: false
trainer:
checkpoint_interval: 462
optimizer_config:
learning_rate:
stepwise:
boundaries: [263340, 272580]
values: [0.32, 0.032, 0.0032]
type: 'stepwise'
warmup:
linear:
warmup_learning_rate: 0.0067
warmup_steps: 2000
steps_per_loop: 462
train_steps: 277200
validation_interval: 462
validation_steps: 625
# SpineNet-49 COCO detection with protocal C config. Expecting 44.2% AP.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
losses:
l2_weight_decay: 4.0e-05
model:
anchor:
anchor_size: 3
aspect_ratios: [0.5, 1.0, 2.0]
num_scales: 3
backbone:
spinenet:
stochastic_depth_drop_rate: 0.2
model_id: '49'
type: 'spinenet'
decoder:
type: 'identity'
head:
num_convs: 4
num_filters: 256
input_size: [640, 640, 3]
max_level: 7
min_level: 3
norm_activation:
activation: 'swish'
norm_epsilon: 0.001
norm_momentum: 0.99
use_sync_bn: true
train_data:
dtype: 'bfloat16'
global_batch_size: 256
is_training: true
parser:
aug_rand_hflip: true
aug_scale_max: 2.0
aug_scale_min: 0.1
validation_data:
dtype: 'bfloat16'
global_batch_size: 8
is_training: false
trainer:
checkpoint_interval: 462
optimizer_config:
learning_rate:
stepwise:
boundaries: [219450, 226380]
values: [0.32, 0.032, 0.0032]
type: 'stepwise'
warmup:
linear:
warmup_learning_rate: 0.0067
warmup_steps: 2000
steps_per_loop: 462
train_steps: 231000
validation_interval: 462
validation_steps: 625
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment