"tests/vscode:/vscode.git/clone" did not exist on "b4a80684133abcfb21f82e1a262cdddded832a26"
Commit c42ce18c authored by Alexey Kurakin's avatar Alexey Kurakin
Browse files

Adversarial logit pairing - update table formatting

parent f06d522c
......@@ -261,12 +261,12 @@ python eval.py \
Following set of pre-trained checkpoints released with this code:
Model | Dataset | Accuracy on<br>clean images | Accuracy on<br>`pgdll_16_1_20` | Accuracy on<br>`pgdll_16_2_10`
-------------+--------------+-----------------+-----------------------------+---------------
[Baseline ResNet-v2-50](http://download.tensorflow.org/models/adversarial_logit_pairing/imagenet64_base_2018_06_26.ckpt.tar.gz) | ImageNet 64x64 | 60.5% | 1.8% | 3.5%
[ALP-trained ResNet-v2-50](http://download.tensorflow.org/models/adversarial_logit_pairing/imagenet64_alp025_2018_06_26.ckpt.tar.gz) | ImageNet 64x64 | 55.7% | 27.5% | 27.8%
[Baseline ResNet-v2-50](http://download.tensorflow.org/models/adversarial_logit_pairing/tiny_imagenet_base_2018_06_26.ckpt.tar.gz) | Tiny ImageNet | 69.2% | 0.1% | 0.3%
[ALP-trained ResNet-v2-50](http://download.tensorflow.org/models/adversarial_logit_pairing/tiny_imagenet_alp05_2018_06_26.ckpt.tar.gz) | Tiny ImageNet | 72.0% | 41.3% | 40.8%
| Model | Dataset | Accuracy on<br>clean images | Accuracy on<br>`pgdll_16_1_20` | Accuracy on<br>`pgdll_16_2_10` |
| ----------- | ------------ | --------------- | --------------------------- | -------------- |
| [Baseline ResNet-v2-50](http://download.tensorflow.org/models/adversarial_logit_pairing/imagenet64_base_2018_06_26.ckpt.tar.gz) | ImageNet 64x64 | 60.5% | 1.8% | 3.5% |
| [ALP-trained ResNet-v2-50](http://download.tensorflow.org/models/adversarial_logit_pairing/imagenet64_alp025_2018_06_26.ckpt.tar.gz) | ImageNet 64x64 | 55.7% | 27.5% | 27.8% |
| [Baseline ResNet-v2-50](http://download.tensorflow.org/models/adversarial_logit_pairing/tiny_imagenet_base_2018_06_26.ckpt.tar.gz) | Tiny ImageNet | 69.2% | 0.1% | 0.3% |
| [ALP-trained ResNet-v2-50](http://download.tensorflow.org/models/adversarial_logit_pairing/tiny_imagenet_alp05_2018_06_26.ckpt.tar.gz) | Tiny ImageNet | 72.0% | 41.3% | 40.8% |
* All provided checkpoints were initially trained with exponential moving
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment