Commit c2666cea authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

[Clean up] Remove enable_eager in the session config: Model garden is TF2 only now.

Remove is_v2_0

PiperOrigin-RevId: 312336907
parent 4ec2ee97
...@@ -119,7 +119,6 @@ def run(flags_obj): ...@@ -119,7 +119,6 @@ def run(flags_obj):
Dictionary of training and eval stats. Dictionary of training and eval stats.
""" """
keras_utils.set_session_config( keras_utils.set_session_config(
enable_eager=flags_obj.enable_eager,
enable_xla=flags_obj.enable_xla) enable_xla=flags_obj.enable_xla)
# Execute flag override logic for better model performance # Execute flag override logic for better model performance
......
...@@ -26,7 +26,6 @@ from tensorflow.python.eager import context ...@@ -26,7 +26,6 @@ from tensorflow.python.eager import context
from tensorflow.python.platform import googletest from tensorflow.python.platform import googletest
from official.benchmark.models import cifar_preprocessing from official.benchmark.models import cifar_preprocessing
from official.benchmark.models import resnet_cifar_main from official.benchmark.models import resnet_cifar_main
from official.utils.misc import keras_utils
from official.utils.testing import integration from official.utils.testing import integration
...@@ -60,8 +59,6 @@ class KerasCifarTest(googletest.TestCase): ...@@ -60,8 +59,6 @@ class KerasCifarTest(googletest.TestCase):
def test_end_to_end_no_dist_strat(self): def test_end_to_end_no_dist_strat(self):
"""Test Keras model with 1 GPU, no distribution strategy.""" """Test Keras model with 1 GPU, no distribution strategy."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
extra_flags = [ extra_flags = [
"-distribution_strategy", "off", "-distribution_strategy", "off",
...@@ -94,8 +91,6 @@ class KerasCifarTest(googletest.TestCase): ...@@ -94,8 +91,6 @@ class KerasCifarTest(googletest.TestCase):
def test_end_to_end_1_gpu(self): def test_end_to_end_1_gpu(self):
"""Test Keras model with 1 GPU.""" """Test Keras model with 1 GPU."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
if context.num_gpus() < 1: if context.num_gpus() < 1:
self.skipTest( self.skipTest(
...@@ -140,8 +135,6 @@ class KerasCifarTest(googletest.TestCase): ...@@ -140,8 +135,6 @@ class KerasCifarTest(googletest.TestCase):
def test_end_to_end_2_gpu(self): def test_end_to_end_2_gpu(self):
"""Test Keras model with 2 GPUs.""" """Test Keras model with 2 GPUs."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
if context.num_gpus() < 2: if context.num_gpus() < 2:
self.skipTest( self.skipTest(
......
...@@ -51,7 +51,6 @@ def run(flags_obj): ...@@ -51,7 +51,6 @@ def run(flags_obj):
Dictionary of training and eval stats. Dictionary of training and eval stats.
""" """
keras_utils.set_session_config( keras_utils.set_session_config(
enable_eager=flags_obj.enable_eager,
enable_xla=flags_obj.enable_xla) enable_xla=flags_obj.enable_xla)
# Execute flag override logic for better model performance # Execute flag override logic for better model performance
......
...@@ -23,7 +23,6 @@ import tensorflow as tf ...@@ -23,7 +23,6 @@ import tensorflow as tf
from tensorflow.python.eager import context from tensorflow.python.eager import context
from official.benchmark.models import resnet_imagenet_main from official.benchmark.models import resnet_imagenet_main
from official.utils.misc import keras_utils
from official.utils.testing import integration from official.utils.testing import integration
from official.vision.image_classification.resnet import imagenet_preprocessing from official.vision.image_classification.resnet import imagenet_preprocessing
...@@ -85,8 +84,6 @@ class KerasImagenetTest(tf.test.TestCase): ...@@ -85,8 +84,6 @@ class KerasImagenetTest(tf.test.TestCase):
def test_end_to_end_no_dist_strat(self, flags_key): def test_end_to_end_no_dist_strat(self, flags_key):
"""Test Keras model with 1 GPU, no distribution strategy.""" """Test Keras model with 1 GPU, no distribution strategy."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
extra_flags = [ extra_flags = [
"-distribution_strategy", "off", "-distribution_strategy", "off",
...@@ -115,8 +112,6 @@ class KerasImagenetTest(tf.test.TestCase): ...@@ -115,8 +112,6 @@ class KerasImagenetTest(tf.test.TestCase):
def test_end_to_end_1_gpu(self, flags_key): def test_end_to_end_1_gpu(self, flags_key):
"""Test Keras model with 1 GPU.""" """Test Keras model with 1 GPU."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
if context.num_gpus() < 1: if context.num_gpus() < 1:
self.skipTest( self.skipTest(
...@@ -138,8 +133,6 @@ class KerasImagenetTest(tf.test.TestCase): ...@@ -138,8 +133,6 @@ class KerasImagenetTest(tf.test.TestCase):
def test_end_to_end_1_gpu_fp16(self, flags_key): def test_end_to_end_1_gpu_fp16(self, flags_key):
"""Test Keras model with 1 GPU and fp16.""" """Test Keras model with 1 GPU and fp16."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
if context.num_gpus() < 1: if context.num_gpus() < 1:
self.skipTest( self.skipTest(
...@@ -164,8 +157,6 @@ class KerasImagenetTest(tf.test.TestCase): ...@@ -164,8 +157,6 @@ class KerasImagenetTest(tf.test.TestCase):
def test_end_to_end_2_gpu(self, flags_key): def test_end_to_end_2_gpu(self, flags_key):
"""Test Keras model with 2 GPUs.""" """Test Keras model with 2 GPUs."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
if context.num_gpus() < 2: if context.num_gpus() < 2:
self.skipTest( self.skipTest(
...@@ -186,8 +177,6 @@ class KerasImagenetTest(tf.test.TestCase): ...@@ -186,8 +177,6 @@ class KerasImagenetTest(tf.test.TestCase):
def test_end_to_end_xla_2_gpu(self, flags_key): def test_end_to_end_xla_2_gpu(self, flags_key):
"""Test Keras model with XLA and 2 GPUs.""" """Test Keras model with XLA and 2 GPUs."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
if context.num_gpus() < 2: if context.num_gpus() < 2:
self.skipTest( self.skipTest(
...@@ -209,8 +198,6 @@ class KerasImagenetTest(tf.test.TestCase): ...@@ -209,8 +198,6 @@ class KerasImagenetTest(tf.test.TestCase):
def test_end_to_end_2_gpu_fp16(self, flags_key): def test_end_to_end_2_gpu_fp16(self, flags_key):
"""Test Keras model with 2 GPUs and fp16.""" """Test Keras model with 2 GPUs and fp16."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
if context.num_gpus() < 2: if context.num_gpus() < 2:
self.skipTest( self.skipTest(
...@@ -235,9 +222,6 @@ class KerasImagenetTest(tf.test.TestCase): ...@@ -235,9 +222,6 @@ class KerasImagenetTest(tf.test.TestCase):
def test_end_to_end_xla_2_gpu_fp16(self, flags_key): def test_end_to_end_xla_2_gpu_fp16(self, flags_key):
"""Test Keras model with XLA, 2 GPUs and fp16.""" """Test Keras model with XLA, 2 GPUs and fp16."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
if context.num_gpus() < 2: if context.num_gpus() < 2:
self.skipTest( self.skipTest(
"{} GPUs are not available for this test. {} GPUs are available". "{} GPUs are not available for this test. {} GPUs are available".
......
...@@ -21,7 +21,6 @@ from __future__ import print_function ...@@ -21,7 +21,6 @@ from __future__ import print_function
from absl.testing import parameterized from absl.testing import parameterized
import tensorflow as tf import tensorflow as tf
from official.benchmark.models import resnet_imagenet_main from official.benchmark.models import resnet_imagenet_main
from official.utils.misc import keras_utils
from official.utils.testing import integration from official.utils.testing import integration
from official.vision.image_classification.resnet import imagenet_preprocessing from official.vision.image_classification.resnet import imagenet_preprocessing
...@@ -70,8 +69,6 @@ class KerasImagenetTest(tf.test.TestCase, parameterized.TestCase): ...@@ -70,8 +69,6 @@ class KerasImagenetTest(tf.test.TestCase, parameterized.TestCase):
]) ])
def test_end_to_end_tpu(self, flags_key): def test_end_to_end_tpu(self, flags_key):
"""Test Keras model with TPU distribution strategy.""" """Test Keras model with TPU distribution strategy."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
extra_flags = [ extra_flags = [
"-distribution_strategy", "tpu", "-distribution_strategy", "tpu",
...@@ -89,8 +86,6 @@ class KerasImagenetTest(tf.test.TestCase, parameterized.TestCase): ...@@ -89,8 +86,6 @@ class KerasImagenetTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.parameters(["resnet"]) @parameterized.parameters(["resnet"])
def test_end_to_end_tpu_bf16(self, flags_key): def test_end_to_end_tpu_bf16(self, flags_key):
"""Test Keras model with TPU and bfloat16 activation.""" """Test Keras model with TPU and bfloat16 activation."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
extra_flags = [ extra_flags = [
"-distribution_strategy", "tpu", "-distribution_strategy", "tpu",
......
...@@ -139,7 +139,6 @@ def build_model(vocab_size, ...@@ -139,7 +139,6 @@ def build_model(vocab_size,
Returns: Returns:
A Keras Model. A Keras Model.
""" """
assert keras_utils.is_v2_0()
LSTM = functools.partial(tf.keras.layers.LSTM, implementation=2) LSTM = functools.partial(tf.keras.layers.LSTM, implementation=2)
# By indirecting the activation through a lambda layer, the logic to dispatch # By indirecting the activation through a lambda layer, the logic to dispatch
...@@ -275,7 +274,6 @@ def run(flags_obj): ...@@ -275,7 +274,6 @@ def run(flags_obj):
tf.keras.mixed_precision.experimental.set_policy(policy) tf.keras.mixed_precision.experimental.set_policy(policy)
keras_utils.set_session_config( keras_utils.set_session_config(
enable_eager=flags_obj.enable_eager,
enable_xla=flags_obj.enable_xla) enable_xla=flags_obj.enable_xla)
strategy = distribution_utils.get_distribution_strategy( strategy = distribution_utils.get_distribution_strategy(
......
...@@ -273,7 +273,6 @@ class ShakespeareKerasBenchmarkReal(ShakespeareBenchmarkBase): ...@@ -273,7 +273,6 @@ class ShakespeareKerasBenchmarkReal(ShakespeareBenchmarkBase):
FLAGS.num_gpus = 1 FLAGS.num_gpus = 1
FLAGS.batch_size = 64 FLAGS.batch_size = 64
FLAGS.cudnn = False FLAGS.cudnn = False
FLAGS.enable_eager = keras_utils.is_v2_0()
self._run_and_report_benchmark() self._run_and_report_benchmark()
def benchmark_1_gpu_no_ds(self): def benchmark_1_gpu_no_ds(self):
...@@ -307,7 +306,6 @@ class ShakespeareKerasBenchmarkReal(ShakespeareBenchmarkBase): ...@@ -307,7 +306,6 @@ class ShakespeareKerasBenchmarkReal(ShakespeareBenchmarkBase):
FLAGS.num_gpus = 1 FLAGS.num_gpus = 1
FLAGS.batch_size = 64 FLAGS.batch_size = 64
FLAGS.cudnn = False FLAGS.cudnn = False
FLAGS.enable_eager = keras_utils.is_v2_0()
FLAGS.enable_xla = True FLAGS.enable_xla = True
self._run_and_report_benchmark() self._run_and_report_benchmark()
...@@ -326,7 +324,6 @@ class ShakespeareKerasBenchmarkReal(ShakespeareBenchmarkBase): ...@@ -326,7 +324,6 @@ class ShakespeareKerasBenchmarkReal(ShakespeareBenchmarkBase):
FLAGS.batch_size = 64 * 8 FLAGS.batch_size = 64 * 8
FLAGS.log_steps = 10 FLAGS.log_steps = 10
FLAGS.cudnn = False FLAGS.cudnn = False
FLAGS.enable_eager = keras_utils.is_v2_0()
self._run_and_report_benchmark() self._run_and_report_benchmark()
def benchmark_xla_8_gpu(self): def benchmark_xla_8_gpu(self):
...@@ -345,7 +342,6 @@ class ShakespeareKerasBenchmarkReal(ShakespeareBenchmarkBase): ...@@ -345,7 +342,6 @@ class ShakespeareKerasBenchmarkReal(ShakespeareBenchmarkBase):
FLAGS.batch_size = 64 * 8 FLAGS.batch_size = 64 * 8
FLAGS.log_steps = 10 FLAGS.log_steps = 10
FLAGS.cudnn = False FLAGS.cudnn = False
FLAGS.enable_eager = keras_utils.is_v2_0()
FLAGS.enable_xla = True FLAGS.enable_xla = True
self._run_and_report_benchmark() self._run_and_report_benchmark()
......
...@@ -347,7 +347,7 @@ def run_bert(strategy, ...@@ -347,7 +347,7 @@ def run_bert(strategy,
if FLAGS.mode != 'train_and_eval': if FLAGS.mode != 'train_and_eval':
raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode) raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
# Enables XLA in Session Config. Should not be set for TPU. # Enables XLA in Session Config. Should not be set for TPU.
keras_utils.set_config_v2(FLAGS.enable_xla) keras_utils.set_session_config(FLAGS.enable_xla)
performance.set_mixed_precision_policy(common_flags.dtype()) performance.set_mixed_precision_policy(common_flags.dtype())
epochs = FLAGS.num_train_epochs epochs = FLAGS.num_train_epochs
......
...@@ -227,7 +227,7 @@ def train_squad(strategy, ...@@ -227,7 +227,7 @@ def train_squad(strategy,
logging.info('Training using customized training loop with distribution' logging.info('Training using customized training loop with distribution'
' strategy.') ' strategy.')
# Enables XLA in Session Config. Should not be set for TPU. # Enables XLA in Session Config. Should not be set for TPU.
keras_utils.set_config_v2(FLAGS.enable_xla) keras_utils.set_session_config(FLAGS.enable_xla)
performance.set_mixed_precision_policy(common_flags.dtype()) performance.set_mixed_precision_policy(common_flags.dtype())
epochs = FLAGS.num_train_epochs epochs = FLAGS.num_train_epochs
......
...@@ -48,7 +48,7 @@ import os ...@@ -48,7 +48,7 @@ import os
from absl import app as absl_app from absl import app as absl_app
from absl import flags from absl import flags
import numpy as np import numpy as np
import tensorflow as tf import tensorflow.compat.v1 as tf
from official.r1.utils.logs import logger from official.r1.utils.logs import logger
from official.utils.flags import core as flags_core from official.utils.flags import core as flags_core
......
...@@ -21,7 +21,7 @@ from absl import app as absl_app ...@@ -21,7 +21,7 @@ from absl import app as absl_app
from absl import flags from absl import flags
from absl import logging from absl import logging
from six.moves import range from six.moves import range
import tensorflow as tf import tensorflow.compat.v1 as tf
from official.r1.mnist import dataset from official.r1.mnist import dataset
from official.r1.utils.logs import hooks_helper from official.r1.utils.logs import hooks_helper
......
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import tensorflow as tf # pylint: disable=g-bad-import-order
from tensorflow.python import eager as tfe # pylint: disable=g-bad-import-order
from official.r1.mnist import mnist
from official.r1.mnist import mnist_eager
from official.utils.misc import keras_utils
def device():
return '/device:GPU:0' if tfe.context.num_gpus() else '/device:CPU:0'
def data_format():
return 'channels_first' if tfe.context.num_gpus() else 'channels_last'
def random_dataset():
batch_size = 64
images = tf.random_normal([batch_size, 784])
labels = tf.random_uniform([batch_size], minval=0, maxval=10, dtype=tf.int32)
return tf.data.Dataset.from_tensors((images, labels))
def train(defun=False):
model = mnist.create_model(data_format())
if defun:
model.call = tf.function(model.call)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
dataset = random_dataset()
with tf.device(device()):
mnist_eager.train(model, optimizer, dataset,
step_counter=tf.train.get_or_create_global_step())
def evaluate(defun=False):
model = mnist.create_model(data_format())
dataset = random_dataset()
if defun:
model.call = tf.function(model.call)
with tf.device(device()):
mnist_eager.test(model, dataset)
class MNISTTest(tf.test.TestCase):
"""Run tests for MNIST eager loop.
MNIST eager uses contrib and will not work with TF 2.0. All tests are
disabled if using TF 2.0.
"""
def setUp(self):
if not keras_utils.is_v2_0():
tf.compat.v1.enable_v2_behavior()
super(MNISTTest, self).setUp()
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_train(self):
train(defun=False)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_evaluate(self):
evaluate(defun=False)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_train_with_defun(self):
train(defun=True)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_evaluate_with_defun(self):
evaluate(defun=True)
if __name__ == '__main__':
tf.test.main()
...@@ -18,12 +18,10 @@ from __future__ import division ...@@ -18,12 +18,10 @@ from __future__ import division
from __future__ import print_function from __future__ import print_function
import time import time
import unittest
import tensorflow as tf # pylint: disable=g-bad-import-order import tensorflow.compat.v1 as tf # pylint: disable=g-bad-import-order
from absl import logging from absl import logging
from official.r1.mnist import mnist from official.r1.mnist import mnist
from official.utils.misc import keras_utils
BATCH_SIZE = 100 BATCH_SIZE = 100
...@@ -51,7 +49,6 @@ class Tests(tf.test.TestCase): ...@@ -51,7 +49,6 @@ class Tests(tf.test.TestCase):
using TF 2.0. using TF 2.0.
""" """
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_mnist(self): def test_mnist(self):
classifier = make_estimator() classifier = make_estimator()
classifier.train(input_fn=dummy_input_fn, steps=2) classifier.train(input_fn=dummy_input_fn, steps=2)
...@@ -71,7 +68,6 @@ class Tests(tf.test.TestCase): ...@@ -71,7 +68,6 @@ class Tests(tf.test.TestCase):
self.assertEqual(predictions['probabilities'].shape, (10,)) self.assertEqual(predictions['probabilities'].shape, (10,))
self.assertEqual(predictions['classes'].shape, ()) self.assertEqual(predictions['classes'].shape, ())
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def mnist_model_fn_helper(self, mode, multi_gpu=False): def mnist_model_fn_helper(self, mode, multi_gpu=False):
features, labels = dummy_input_fn() features, labels = dummy_input_fn()
image_count = features.shape[0] image_count = features.shape[0]
...@@ -99,19 +95,15 @@ class Tests(tf.test.TestCase): ...@@ -99,19 +95,15 @@ class Tests(tf.test.TestCase):
self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32) self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32) self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_mnist_model_fn_train_mode(self): def test_mnist_model_fn_train_mode(self):
self.mnist_model_fn_helper(tf.estimator.ModeKeys.TRAIN) self.mnist_model_fn_helper(tf.estimator.ModeKeys.TRAIN)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_mnist_model_fn_train_mode_multi_gpu(self): def test_mnist_model_fn_train_mode_multi_gpu(self):
self.mnist_model_fn_helper(tf.estimator.ModeKeys.TRAIN, multi_gpu=True) self.mnist_model_fn_helper(tf.estimator.ModeKeys.TRAIN, multi_gpu=True)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_mnist_model_fn_eval_mode(self): def test_mnist_model_fn_eval_mode(self):
self.mnist_model_fn_helper(tf.estimator.ModeKeys.EVAL) self.mnist_model_fn_helper(tf.estimator.ModeKeys.EVAL)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_mnist_model_fn_predict_mode(self): def test_mnist_model_fn_predict_mode(self):
self.mnist_model_fn_helper(tf.estimator.ModeKeys.PREDICT) self.mnist_model_fn_helper(tf.estimator.ModeKeys.PREDICT)
...@@ -144,4 +136,5 @@ class Benchmarks(tf.test.Benchmark): ...@@ -144,4 +136,5 @@ class Benchmarks(tf.test.Benchmark):
if __name__ == '__main__': if __name__ == '__main__':
logging.set_verbosity(logging.ERROR) logging.set_verbosity(logging.ERROR)
tf.disable_v2_behavior()
tf.test.main() tf.test.main()
...@@ -24,7 +24,6 @@ import numpy as np ...@@ -24,7 +24,6 @@ import numpy as np
import tensorflow as tf import tensorflow as tf
from official.r1.resnet import cifar10_main from official.r1.resnet import cifar10_main
from official.utils.misc import keras_utils
from official.utils.testing import integration from official.utils.testing import integration
logging.set_verbosity(logging.ERROR) logging.set_verbosity(logging.ERROR)
...@@ -44,7 +43,6 @@ class BaseTest(tf.test.TestCase): ...@@ -44,7 +43,6 @@ class BaseTest(tf.test.TestCase):
@classmethod @classmethod
def setUpClass(cls): # pylint: disable=invalid-name def setUpClass(cls): # pylint: disable=invalid-name
super(BaseTest, cls).setUpClass() super(BaseTest, cls).setUpClass()
if keras_utils.is_v2_0:
tf.compat.v1.disable_eager_execution() tf.compat.v1.disable_eager_execution()
cifar10_main.define_cifar_flags() cifar10_main.define_cifar_flags()
......
...@@ -23,7 +23,6 @@ import tensorflow as tf # pylint: disable=g-bad-import-order ...@@ -23,7 +23,6 @@ import tensorflow as tf # pylint: disable=g-bad-import-order
from absl import logging from absl import logging
from official.r1.resnet import imagenet_main from official.r1.resnet import imagenet_main
from official.utils.misc import keras_utils
from official.utils.testing import integration from official.utils.testing import integration
logging.set_verbosity(logging.ERROR) logging.set_verbosity(logging.ERROR)
...@@ -43,7 +42,6 @@ class BaseTest(tf.test.TestCase): ...@@ -43,7 +42,6 @@ class BaseTest(tf.test.TestCase):
def setUp(self): def setUp(self):
super(BaseTest, self).setUp() super(BaseTest, self).setUp()
if keras_utils.is_v2_0:
tf.compat.v1.disable_eager_execution() tf.compat.v1.disable_eager_execution()
self._num_validation_images = imagenet_main.NUM_IMAGES['validation'] self._num_validation_images = imagenet_main.NUM_IMAGES['validation']
imagenet_main.NUM_IMAGES['validation'] = 4 imagenet_main.NUM_IMAGES['validation'] = 4
......
...@@ -28,7 +28,6 @@ import tensorflow as tf ...@@ -28,7 +28,6 @@ import tensorflow as tf
# pylint: enable=wrong-import-order # pylint: enable=wrong-import-order
from official.r1.utils.data import file_io from official.r1.utils.data import file_io
from official.utils.misc import keras_utils
_RAW_ROW = "raw_row" _RAW_ROW = "raw_row"
...@@ -108,7 +107,6 @@ class BaseTest(tf.test.TestCase): ...@@ -108,7 +107,6 @@ class BaseTest(tf.test.TestCase):
def setUp(self): def setUp(self):
super(BaseTest, self).setUp() super(BaseTest, self).setUp()
if keras_utils.is_v2_0:
tf.compat.v1.disable_eager_execution() tf.compat.v1.disable_eager_execution()
def _test_sharding(self, row_count, cpu_count, expected): def _test_sharding(self, row_count, cpu_count, expected):
......
...@@ -26,7 +26,7 @@ from absl import app as absl_app ...@@ -26,7 +26,7 @@ from absl import app as absl_app
from absl import flags from absl import flags
from six.moves import urllib from six.moves import urllib
from six.moves import zip from six.moves import zip
import tensorflow as tf import tensorflow.compat.v1 as tf
# pylint: enable=wrong-import-order # pylint: enable=wrong-import-order
from official.utils.flags import core as flags_core from official.utils.flags import core as flags_core
......
...@@ -18,7 +18,7 @@ import os ...@@ -18,7 +18,7 @@ import os
from absl import app as absl_app from absl import app as absl_app
from absl import flags from absl import flags
import tensorflow as tf import tensorflow.compat.v1 as tf
from official.r1.utils.logs import logger from official.r1.utils.logs import logger
from official.r1.wide_deep import census_dataset from official.r1.wide_deep import census_dataset
from official.r1.wide_deep import wide_deep_run_loop from official.r1.wide_deep import wide_deep_run_loop
......
...@@ -18,15 +18,13 @@ from __future__ import division ...@@ -18,15 +18,13 @@ from __future__ import division
from __future__ import print_function from __future__ import print_function
import os import os
import unittest
import tensorflow as tf # pylint: disable=g-bad-import-order
from absl import logging from absl import logging
import tensorflow.compat.v1 as tf
from official.utils.misc import keras_utils
from official.utils.testing import integration
from official.r1.wide_deep import census_dataset from official.r1.wide_deep import census_dataset
from official.r1.wide_deep import census_main from official.r1.wide_deep import census_main
from official.utils.testing import integration
logging.set_verbosity(logging.ERROR) logging.set_verbosity(logging.ERROR)
...@@ -73,7 +71,6 @@ class BaseTest(tf.test.TestCase): ...@@ -73,7 +71,6 @@ class BaseTest(tf.test.TestCase):
os.path.join(self.temp_dir, fname), 'w') as test_csv: os.path.join(self.temp_dir, fname), 'w') as test_csv:
test_csv.write(test_csv_contents) test_csv.write(test_csv_contents)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_input_fn(self): def test_input_fn(self):
dataset = census_dataset.input_fn(self.input_csv, 1, False, 1) dataset = census_dataset.input_fn(self.input_csv, 1, False, 1)
features, labels = dataset.make_one_shot_iterator().get_next() features, labels = dataset.make_one_shot_iterator().get_next()
...@@ -127,11 +124,9 @@ class BaseTest(tf.test.TestCase): ...@@ -127,11 +124,9 @@ class BaseTest(tf.test.TestCase):
initial_results['auc_precision_recall']) initial_results['auc_precision_recall'])
self.assertGreater(final_results['accuracy'], initial_results['accuracy']) self.assertGreater(final_results['accuracy'], initial_results['accuracy'])
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_wide_deep_estimator_training(self): def test_wide_deep_estimator_training(self):
self.build_and_test_estimator('wide_deep') self.build_and_test_estimator('wide_deep')
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_end_to_end_wide(self): def test_end_to_end_wide(self):
integration.run_synthetic( integration.run_synthetic(
main=census_main.main, tmp_root=self.get_temp_dir(), main=census_main.main, tmp_root=self.get_temp_dir(),
...@@ -142,7 +137,6 @@ class BaseTest(tf.test.TestCase): ...@@ -142,7 +137,6 @@ class BaseTest(tf.test.TestCase):
], ],
synth=False) synth=False)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_end_to_end_deep(self): def test_end_to_end_deep(self):
integration.run_synthetic( integration.run_synthetic(
main=census_main.main, tmp_root=self.get_temp_dir(), main=census_main.main, tmp_root=self.get_temp_dir(),
...@@ -153,7 +147,6 @@ class BaseTest(tf.test.TestCase): ...@@ -153,7 +147,6 @@ class BaseTest(tf.test.TestCase):
], ],
synth=False) synth=False)
@unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.')
def test_end_to_end_wide_deep(self): def test_end_to_end_wide_deep(self):
integration.run_synthetic( integration.run_synthetic(
main=census_main.main, tmp_root=self.get_temp_dir(), main=census_main.main, tmp_root=self.get_temp_dir(),
...@@ -166,4 +159,5 @@ class BaseTest(tf.test.TestCase): ...@@ -166,4 +159,5 @@ class BaseTest(tf.test.TestCase):
if __name__ == '__main__': if __name__ == '__main__':
tf.disable_eager_execution()
tf.test.main() tf.test.main()
...@@ -25,7 +25,7 @@ import os ...@@ -25,7 +25,7 @@ import os
from absl import app as absl_app from absl import app as absl_app
from absl import flags from absl import flags
import numpy as np import numpy as np
import tensorflow as tf import tensorflow.compat.v1 as tf
# pylint: enable=wrong-import-order # pylint: enable=wrong-import-order
from official.recommendation import movielens from official.recommendation import movielens
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment