Commit ba5c96c2 authored by Sergio Guadarrama's avatar Sergio Guadarrama Committed by GitHub
Browse files

Merge pull request #366 from nathansilberman/master

Full code refactor and added all networks
parents bc0a0a86 65fad62d
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains a model definition for AlexNet.
This work was first described in:
ImageNet Classification with Deep Convolutional Neural Networks
Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton
and later refined in:
One weird trick for parallelizing convolutional neural networks
Alex Krizhevsky, 2014
Here we provide the implementation proposed in "One weird trick" and not
"ImageNet Classification", as per the paper, the LRN layers have been removed.
Usage:
with slim.arg_scope(alexnet.alexnet_v2_arg_scope()):
outputs, end_points = alexnet.alexnet_v2(inputs)
@@alexnet_v2
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
slim = tf.contrib.slim
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)
def alexnet_v2_arg_scope(weight_decay=0.0005):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
biases_initializer=tf.constant_initializer(0.1),
weights_regularizer=slim.l2_regularizer(weight_decay)):
with slim.arg_scope([slim.conv2d], padding='SAME'):
with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc:
return arg_sc
def alexnet_v2(inputs,
num_classes=1000,
is_training=True,
dropout_keep_prob=0.5,
spatial_squeeze=True,
scope='alexnet_v2'):
"""AlexNet version 2.
Described in: http://arxiv.org/pdf/1404.5997v2.pdf
Parameters from:
github.com/akrizhevsky/cuda-convnet2/blob/master/layers/
layers-imagenet-1gpu.cfg
Note: All the fully_connected layers have been transformed to conv2d layers.
To use in classification mode, resize input to 224x224. To use in fully
convolutional mode, set spatial_squeeze to false.
The LRN layers have been removed and change the initializers from
random_normal_initializer to xavier_initializer.
Args:
inputs: a tensor of size [batch_size, height, width, channels].
num_classes: number of predicted classes.
is_training: whether or not the model is being trained.
dropout_keep_prob: the probability that activations are kept in the dropout
layers during training.
spatial_squeeze: whether or not should squeeze the spatial dimensions of the
outputs. Useful to remove unnecessary dimensions for classification.
scope: Optional scope for the variables.
Returns:
the last op containing the log predictions and end_points dict.
"""
with tf.variable_scope(scope, 'alexnet_v2', [inputs]) as sc:
end_points_collection = sc.name + '_end_points'
# Collect outputs for conv2d, fully_connected and max_pool2d.
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
outputs_collections=[end_points_collection]):
net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID',
scope='conv1')
net = slim.max_pool2d(net, [3, 3], 2, scope='pool1')
net = slim.conv2d(net, 192, [5, 5], scope='conv2')
net = slim.max_pool2d(net, [3, 3], 2, scope='pool2')
net = slim.conv2d(net, 384, [3, 3], scope='conv3')
net = slim.conv2d(net, 384, [3, 3], scope='conv4')
net = slim.conv2d(net, 256, [3, 3], scope='conv5')
net = slim.max_pool2d(net, [3, 3], 2, scope='pool5')
# Use conv2d instead of fully_connected layers.
with slim.arg_scope([slim.conv2d],
weights_initializer=trunc_normal(0.005),
biases_initializer=tf.constant_initializer(0.1)):
net = slim.conv2d(net, 4096, [5, 5], padding='VALID',
scope='fc6')
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='dropout6')
net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='dropout7')
net = slim.conv2d(net, num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
biases_initializer=tf.zeros_initializer,
scope='fc8')
# Convert end_points_collection into a end_point dict.
end_points = dict(tf.get_collection(end_points_collection))
if spatial_squeeze:
net = tf.squeeze(net, [1, 2], name='fc8/squeezed')
end_points[sc.name + '/fc8'] = net
return net, end_points
alexnet_v2.default_image_size = 224
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.nets.alexnet."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from nets import alexnet
slim = tf.contrib.slim
class AlexnetV2Test(tf.test.TestCase):
def testBuild(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = alexnet.alexnet_v2(inputs, num_classes)
self.assertEquals(logits.op.name, 'alexnet_v2/fc8/squeezed')
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
def testFullyConvolutional(self):
batch_size = 1
height, width = 300, 400
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = alexnet.alexnet_v2(inputs, num_classes, spatial_squeeze=False)
self.assertEquals(logits.op.name, 'alexnet_v2/fc8/BiasAdd')
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, 4, 7, num_classes])
def testEndPoints(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = alexnet.alexnet_v2(inputs, num_classes)
expected_names = ['alexnet_v2/conv1',
'alexnet_v2/pool1',
'alexnet_v2/conv2',
'alexnet_v2/pool2',
'alexnet_v2/conv3',
'alexnet_v2/conv4',
'alexnet_v2/conv5',
'alexnet_v2/pool5',
'alexnet_v2/fc6',
'alexnet_v2/fc7',
'alexnet_v2/fc8'
]
self.assertSetEqual(set(end_points.keys()), set(expected_names))
def testModelVariables(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
alexnet.alexnet_v2(inputs, num_classes)
expected_names = ['alexnet_v2/conv1/weights',
'alexnet_v2/conv1/biases',
'alexnet_v2/conv2/weights',
'alexnet_v2/conv2/biases',
'alexnet_v2/conv3/weights',
'alexnet_v2/conv3/biases',
'alexnet_v2/conv4/weights',
'alexnet_v2/conv4/biases',
'alexnet_v2/conv5/weights',
'alexnet_v2/conv5/biases',
'alexnet_v2/fc6/weights',
'alexnet_v2/fc6/biases',
'alexnet_v2/fc7/weights',
'alexnet_v2/fc7/biases',
'alexnet_v2/fc8/weights',
'alexnet_v2/fc8/biases',
]
model_variables = [v.op.name for v in slim.get_model_variables()]
self.assertSetEqual(set(model_variables), set(expected_names))
def testEvaluation(self):
batch_size = 2
height, width = 224, 224
num_classes = 1000
with self.test_session():
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False)
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
predictions = tf.argmax(logits, 1)
self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 224, 224
eval_height, eval_width = 300, 400
num_classes = 1000
with self.test_session():
train_inputs = tf.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = alexnet.alexnet_v2(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
tf.get_variable_scope().reuse_variables()
eval_inputs = tf.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False,
spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 4, 7, num_classes])
logits = tf.reduce_mean(logits, [1, 2])
predictions = tf.argmax(logits, 1)
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
def testForward(self):
batch_size = 1
height, width = 224, 224
with self.test_session() as sess:
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = alexnet.alexnet_v2(inputs)
sess.run(tf.initialize_all_variables())
output = sess.run(logits)
self.assertTrue(output.any())
if __name__ == '__main__':
tf.test.main()
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains a variant of the CIFAR-10 model definition."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
slim = tf.contrib.slim
trunc_normal = lambda stddev: tf.truncated_normal_initializer(stddev=stddev)
def cifarnet(images, num_classes=10, is_training=False,
dropout_keep_prob=0.5,
prediction_fn=slim.softmax,
scope='CifarNet'):
"""Creates a variant of the CifarNet model.
Note that since the output is a set of 'logits', the values fall in the
interval of (-infinity, infinity). Consequently, to convert the outputs to a
probability distribution over the characters, one will need to convert them
using the softmax function:
logits = cifarnet.cifarnet(images, is_training=False)
probabilities = tf.nn.softmax(logits)
predictions = tf.argmax(logits, 1)
Args:
images: A batch of `Tensors` of size [batch_size, height, width, channels].
num_classes: the number of classes in the dataset.
is_training: specifies whether or not we're currently training the model.
This variable will determine the behaviour of the dropout layer.
dropout_keep_prob: the percentage of activation values that are retained.
prediction_fn: a function to get predictions out of logits.
scope: Optional variable_scope.
Returns:
logits: the pre-softmax activations, a tensor of size
[batch_size, `num_classes`]
end_points: a dictionary from components of the network to the corresponding
activation.
"""
end_points = {}
with tf.variable_scope(scope, 'CifarNet', [images, num_classes]):
net = slim.conv2d(images, 64, [5, 5], scope='conv1')
end_points['conv1'] = net
net = slim.max_pool2d(net, [2, 2], 2, scope='pool1')
end_points['pool1'] = net
net = tf.nn.lrn(net, 4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm1')
net = slim.conv2d(net, 64, [5, 5], scope='conv2')
end_points['conv2'] = net
net = tf.nn.lrn(net, 4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm2')
net = slim.max_pool2d(net, [2, 2], 2, scope='pool2')
end_points['pool2'] = net
net = slim.flatten(net)
end_points['Flatten'] = net
net = slim.fully_connected(net, 384, scope='fc3')
end_points['fc3'] = net
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='dropout3')
net = slim.fully_connected(net, 192, scope='fc4')
end_points['fc4'] = net
logits = slim.fully_connected(net, num_classes,
biases_initializer=tf.zeros_initializer,
weights_initializer=trunc_normal(1/192.0),
weights_regularizer=None,
activation_fn=None,
scope='logits')
end_points['Logits'] = logits
end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
return logits, end_points
cifarnet.default_image_size = 32
def cifarnet_arg_scope(weight_decay=0.004):
"""Defines the default cifarnet argument scope.
Args:
weight_decay: The weight decay to use for regularizing the model.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
with slim.arg_scope(
[slim.conv2d],
weights_initializer=tf.truncated_normal_initializer(stddev=5e-2),
activation_fn=tf.nn.relu):
with slim.arg_scope(
[slim.fully_connected],
biases_initializer=tf.constant_initializer(0.1),
weights_initializer=trunc_normal(0.04),
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=tf.nn.relu) as sc:
return sc
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Brings inception_v1, inception_v2 and inception_v3 under one namespace."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# pylint: disable=unused-import
from nets.inception_resnet_v2 import inception_resnet_v2
from nets.inception_resnet_v2 import inception_resnet_v2_arg_scope
from nets.inception_v1 import inception_v1
from nets.inception_v1 import inception_v1_arg_scope
from nets.inception_v1 import inception_v1_base
from nets.inception_v2 import inception_v2
from nets.inception_v2 import inception_v2_arg_scope
from nets.inception_v2 import inception_v2_base
from nets.inception_v3 import inception_v3
from nets.inception_v3 import inception_v3_arg_scope
from nets.inception_v3 import inception_v3_base
# pylint: enable=unused-import
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition of the Inception Resnet V2 architecture.
As described in http://arxiv.org/abs/1602.07261.
Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
slim = tf.contrib.slim
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 35x35 resnet block."""
with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
mixed = tf.concat(3, [tower_conv, tower_conv1_1, tower_conv2_2])
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 17x17 resnet block."""
with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
scope='Conv2d_0b_1x7')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
scope='Conv2d_0c_7x1')
mixed = tf.concat(3, [tower_conv, tower_conv1_2])
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 8x8 resnet block."""
with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
scope='Conv2d_0b_1x3')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
scope='Conv2d_0c_3x1')
mixed = tf.concat(3, [tower_conv, tower_conv1_2])
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
def inception_resnet_v2(inputs, num_classes=1001, is_training=True,
dropout_keep_prob=0.8,
reuse=None,
scope='InceptionResnetV2'):
"""Creates the Inception Resnet V2 model.
Args:
inputs: a 4-D tensor of size [batch_size, height, width, 3].
num_classes: number of predicted classes.
is_training: whether is training or not.
dropout_keep_prob: float, the fraction to keep before final layer.
reuse: whether or not the network and its variables should be reused. To be
able to reuse 'scope' must be given.
scope: Optional variable_scope.
Returns:
logits: the logits outputs of the model.
end_points: the set of end_points from the inception model.
"""
end_points = {}
with tf.variable_scope(scope, 'InceptionResnetV2', [inputs], reuse=reuse):
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1, padding='SAME'):
# 149 x 149 x 32
net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
end_points['Conv2d_1a_3x3'] = net
# 147 x 147 x 32
net = slim.conv2d(net, 32, 3, padding='VALID',
scope='Conv2d_2a_3x3')
end_points['Conv2d_2a_3x3'] = net
# 147 x 147 x 64
net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
end_points['Conv2d_2b_3x3'] = net
# 73 x 73 x 64
net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_3a_3x3')
end_points['MaxPool_3a_3x3'] = net
# 73 x 73 x 80
net = slim.conv2d(net, 80, 1, padding='VALID',
scope='Conv2d_3b_1x1')
end_points['Conv2d_3b_1x1'] = net
# 71 x 71 x 192
net = slim.conv2d(net, 192, 3, padding='VALID',
scope='Conv2d_4a_3x3')
end_points['Conv2d_4a_3x3'] = net
# 35 x 35 x 192
net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_5a_3x3')
end_points['MaxPool_5a_3x3'] = net
# 35 x 35 x 320
with tf.variable_scope('Mixed_5b'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5,
scope='Conv2d_0b_5x5')
with tf.variable_scope('Branch_2'):
tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3,
scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3,
scope='Conv2d_0c_3x3')
with tf.variable_scope('Branch_3'):
tower_pool = slim.avg_pool2d(net, 3, stride=1, padding='SAME',
scope='AvgPool_0a_3x3')
tower_pool_1 = slim.conv2d(tower_pool, 64, 1,
scope='Conv2d_0b_1x1')
net = tf.concat(3, [tower_conv, tower_conv1_1,
tower_conv2_2, tower_pool_1])
end_points['Mixed_5b'] = net
net = slim.repeat(net, 10, block35, scale=0.17)
# 17 x 17 x 1024
with tf.variable_scope('Mixed_6a'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 384, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3,
scope='Conv2d_0b_3x3')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3,
stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat(3, [tower_conv, tower_conv1_2, tower_pool])
end_points['Mixed_6a'] = net
net = slim.repeat(net, 20, block17, scale=0.10)
# Auxillary tower
with tf.variable_scope('AuxLogits'):
aux = slim.avg_pool2d(net, 5, stride=3, padding='VALID',
scope='Conv2d_1a_3x3')
aux = slim.conv2d(aux, 128, 1, scope='Conv2d_1b_1x1')
aux = slim.conv2d(aux, 768, aux.get_shape()[1:3],
padding='VALID', scope='Conv2d_2a_5x5')
aux = slim.flatten(aux)
aux = slim.fully_connected(aux, num_classes, activation_fn=None,
scope='Logits')
end_points['AuxLogits'] = aux
with tf.variable_scope('Mixed_7a'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1, 288, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3,
scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 320, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_3'):
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat(3, [tower_conv_1, tower_conv1_1,
tower_conv2_2, tower_pool])
end_points['Mixed_7a'] = net
net = slim.repeat(net, 9, block8, scale=0.20)
net = block8(net, activation_fn=None)
net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1')
end_points['Conv2d_7b_1x1'] = net
with tf.variable_scope('Logits'):
end_points['PrePool'] = net
net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID',
scope='AvgPool_1a_8x8')
net = slim.flatten(net)
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='Dropout')
end_points['PreLogitsFlatten'] = net
logits = slim.fully_connected(net, num_classes, activation_fn=None,
scope='Logits')
end_points['Logits'] = logits
end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions')
return logits, end_points
inception_resnet_v2.default_image_size = 299
def inception_resnet_v2_arg_scope(weight_decay=0.00004,
batch_norm_decay=0.9997,
batch_norm_epsilon=0.001):
"""Yields the scope with the default parameters for inception_resnet_v2.
Args:
weight_decay: the weight decay for weights variables.
batch_norm_decay: decay for the moving average of batch_norm momentums.
batch_norm_epsilon: small float added to variance to avoid dividing by zero.
Returns:
a arg_scope with the parameters needed for inception_resnet_v2.
"""
# Set weight_decay for weights in conv2d and fully_connected layers.
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
biases_regularizer=slim.l2_regularizer(weight_decay)):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
}
# Set activation_fn and parameters for batch_norm.
with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params) as scope:
return scope
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.inception_resnet_v2."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from nets import inception
class InceptionTest(tf.test.TestCase):
def testBuildLogits(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = inception.inception_resnet_v2(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
def testBuildEndPoints(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_resnet_v2(inputs, num_classes)
self.assertTrue('Logits' in end_points)
logits = end_points['Logits']
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue('AuxLogits' in end_points)
aux_logits = end_points['AuxLogits']
self.assertListEqual(aux_logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['PrePool']
self.assertListEqual(pre_pool.get_shape().as_list(),
[batch_size, 8, 8, 1536])
def testVariablesSetDevice(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
# Force all Variables to reside on the device.
with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
inception.inception_resnet_v2(inputs, num_classes)
with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
inception.inception_resnet_v2(inputs, num_classes)
for v in tf.get_collection(tf.GraphKeys.VARIABLES, scope='on_cpu'):
self.assertDeviceEqual(v.device, '/cpu:0')
for v in tf.get_collection(tf.GraphKeys.VARIABLES, scope='on_gpu'):
self.assertDeviceEqual(v.device, '/gpu:0')
def testHalfSizeImages(self):
batch_size = 5
height, width = 150, 150
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, end_points = inception.inception_resnet_v2(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['PrePool']
self.assertListEqual(pre_pool.get_shape().as_list(),
[batch_size, 3, 3, 1536])
def testUnknownBatchSize(self):
batch_size = 1
height, width = 299, 299
num_classes = 1000
with self.test_session() as sess:
inputs = tf.placeholder(tf.float32, (None, height, width, 3))
logits, _ = inception.inception_resnet_v2(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[None, num_classes])
images = tf.random_uniform((batch_size, height, width, 3))
sess.run(tf.initialize_all_variables())
output = sess.run(logits, {inputs: images.eval()})
self.assertEquals(output.shape, (batch_size, num_classes))
def testEvaluation(self):
batch_size = 2
height, width = 299, 299
num_classes = 1000
with self.test_session() as sess:
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = inception.inception_resnet_v2(eval_inputs,
num_classes,
is_training=False)
predictions = tf.argmax(logits, 1)
sess.run(tf.initialize_all_variables())
output = sess.run(predictions)
self.assertEquals(output.shape, (batch_size,))
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
with self.test_session() as sess:
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_resnet_v2(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_resnet_v2(eval_inputs,
num_classes,
is_training=False,
reuse=True)
predictions = tf.argmax(logits, 1)
sess.run(tf.initialize_all_variables())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
if __name__ == '__main__':
tf.test.main()
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition for inception v1 classification network."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
slim = tf.contrib.slim
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)
def inception_v1_base(inputs,
final_endpoint='Mixed_5c',
scope='InceptionV1'):
"""Defines the Inception V1 base architecture.
This architecture is defined in:
Going deeper with convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
http://arxiv.org/pdf/1409.4842v1.pdf.
Args:
inputs: a tensor of size [batch_size, height, width, channels].
final_endpoint: specifies the endpoint to construct the network up to. It
can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e',
'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c']
scope: Optional variable_scope.
Returns:
A dictionary from components of the network to the corresponding activation.
Raises:
ValueError: if final_endpoint is not set to one of the predefined values.
"""
end_points = {}
with tf.variable_scope(scope, 'InceptionV1', [inputs]):
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_initializer=trunc_normal(0.01)):
with slim.arg_scope([slim.conv2d, slim.max_pool2d],
stride=1, padding='SAME'):
end_point = 'Conv2d_1a_7x7'
net = slim.conv2d(inputs, 64, [7, 7], stride=2, scope=end_point)
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'MaxPool_2a_3x3'
net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point)
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Conv2d_2b_1x1'
net = slim.conv2d(net, 64, [1, 1], scope=end_point)
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Conv2d_2c_3x3'
net = slim.conv2d(net, 192, [3, 3], scope=end_point)
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'MaxPool_3a_3x3'
net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point)
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Mixed_3b'
with tf.variable_scope(end_point):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 96, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 128, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(net, 16, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 32, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 32, [1, 1], scope='Conv2d_0b_1x1')
net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Mixed_3c'
with tf.variable_scope(end_point):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 192, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'MaxPool_4a_3x3'
net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point)
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Mixed_4b'
with tf.variable_scope(end_point):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 96, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 208, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(net, 16, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 48, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Mixed_4c'
with tf.variable_scope(end_point):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 112, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 224, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(net, 24, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 64, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Mixed_4d'
with tf.variable_scope(end_point):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 256, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(net, 24, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 64, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Mixed_4e'
with tf.variable_scope(end_point):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 112, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 144, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 288, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 64, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Mixed_4f'
with tf.variable_scope(end_point):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 256, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 320, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 128, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1')
net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'MaxPool_5a_2x2'
net = slim.max_pool2d(net, [2, 2], stride=2, scope=end_point)
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Mixed_5b'
with tf.variable_scope(end_point):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 256, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 320, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 128, [3, 3], scope='Conv2d_0a_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1')
net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
end_point = 'Mixed_5c'
with tf.variable_scope(end_point):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 384, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 128, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1')
net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
end_points[end_point] = net
if final_endpoint == end_point: return net, end_points
raise ValueError('Unknown final endpoint %s' % final_endpoint)
def inception_v1(inputs,
num_classes=1000,
is_training=True,
dropout_keep_prob=0.8,
prediction_fn=slim.softmax,
spatial_squeeze=True,
reuse=None,
scope='InceptionV1'):
"""Defines the Inception V1 architecture.
This architecture is defined in:
Going deeper with convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
http://arxiv.org/pdf/1409.4842v1.pdf.
The default image size used to train this network is 224x224.
Args:
inputs: a tensor of size [batch_size, height, width, channels].
num_classes: number of predicted classes.
is_training: whether is training or not.
dropout_keep_prob: the percentage of activation values that are retained.
prediction_fn: a function to get predictions out of logits.
spatial_squeeze: if True, logits is of shape is [B, C], if false logits is
of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
reuse: whether or not the network and its variables should be reused. To be
able to reuse 'scope' must be given.
scope: Optional variable_scope.
Returns:
logits: the pre-softmax activations, a tensor of size
[batch_size, num_classes]
end_points: a dictionary from components of the network to the corresponding
activation.
"""
# Final pooling and prediction
with tf.variable_scope(scope, 'InceptionV1', [inputs, num_classes],
reuse=reuse) as scope:
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
net, end_points = inception_v1_base(inputs, scope=scope)
with tf.variable_scope('Logits'):
net = slim.avg_pool2d(net, [7, 7], stride=1, scope='MaxPool_0a_7x7')
net = slim.dropout(net,
dropout_keep_prob, scope='Dropout_0b')
logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
normalizer_fn=None, scope='Conv2d_0c_1x1')
if spatial_squeeze:
logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
end_points['Logits'] = logits
end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
return logits, end_points
inception_v1.default_image_size = 224
def inception_v1_arg_scope(weight_decay=0.00004,
use_batch_norm=True):
"""Defines the default InceptionV1 arg scope.
Note: Althougth the original paper didn't use batch_norm we found it useful.
Args:
weight_decay: The weight decay to use for regularizing the model.
use_batch_norm: "If `True`, batch_norm is applied after each convolution.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.9997,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# collection containing update_ops.
'updates_collections': tf.GraphKeys.UPDATE_OPS,
}
if use_batch_norm:
normalizer_fn = slim.batch_norm
normalizer_params = batch_norm_params
else:
normalizer_fn = None
normalizer_params = {}
# Set weight_decay for weights in Conv and FC layers.
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay)):
with slim.arg_scope(
[slim.conv2d],
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=normalizer_fn,
normalizer_params=normalizer_params) as sc:
return sc
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nets.inception_v1."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from nets import inception
slim = tf.contrib.slim
class InceptionV1Test(tf.test.TestCase):
def testBuildClassificationNetwork(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, end_points = inception.inception_v1(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue('Predictions' in end_points)
self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
[batch_size, num_classes])
def testBuildBaseNetwork(self):
batch_size = 5
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
mixed_6c, end_points = inception.inception_v1_base(inputs)
self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c'))
self.assertListEqual(mixed_6c.get_shape().as_list(),
[batch_size, 7, 7, 1024])
expected_endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b',
'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c',
'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2',
'Mixed_5b', 'Mixed_5c']
self.assertItemsEqual(end_points.keys(), expected_endpoints)
def testBuildOnlyUptoFinalEndpoint(self):
batch_size = 5
height, width = 224, 224
endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d',
'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b',
'Mixed_5c']
for index, endpoint in enumerate(endpoints):
with tf.Graph().as_default():
inputs = tf.random_uniform((batch_size, height, width, 3))
out_tensor, end_points = inception.inception_v1_base(
inputs, final_endpoint=endpoint)
self.assertTrue(out_tensor.op.name.startswith(
'InceptionV1/' + endpoint))
self.assertItemsEqual(endpoints[:index+1], end_points)
def testBuildAndCheckAllEndPointsUptoMixed5c(self):
batch_size = 5
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_v1_base(inputs,
final_endpoint='Mixed_5c')
endpoints_shapes = {'Conv2d_1a_7x7': [5, 112, 112, 64],
'MaxPool_2a_3x3': [5, 56, 56, 64],
'Conv2d_2b_1x1': [5, 56, 56, 64],
'Conv2d_2c_3x3': [5, 56, 56, 192],
'MaxPool_3a_3x3': [5, 28, 28, 192],
'Mixed_3b': [5, 28, 28, 256],
'Mixed_3c': [5, 28, 28, 480],
'MaxPool_4a_3x3': [5, 14, 14, 480],
'Mixed_4b': [5, 14, 14, 512],
'Mixed_4c': [5, 14, 14, 512],
'Mixed_4d': [5, 14, 14, 512],
'Mixed_4e': [5, 14, 14, 528],
'Mixed_4f': [5, 14, 14, 832],
'MaxPool_5a_2x2': [5, 7, 7, 832],
'Mixed_5b': [5, 7, 7, 832],
'Mixed_5c': [5, 7, 7, 1024]}
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
for endpoint_name in endpoints_shapes:
expected_shape = endpoints_shapes[endpoint_name]
self.assertTrue(endpoint_name in end_points)
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
expected_shape)
def testModelHasExpectedNumberOfParameters(self):
batch_size = 5
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
with slim.arg_scope(inception.inception_v1_arg_scope()):
inception.inception_v1_base(inputs)
total_params, _ = slim.model_analyzer.analyze_vars(
slim.get_model_variables())
self.assertAlmostEqual(5607184, total_params)
def testHalfSizeImages(self):
batch_size = 5
height, width = 112, 112
inputs = tf.random_uniform((batch_size, height, width, 3))
mixed_5c, _ = inception.inception_v1_base(inputs)
self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c'))
self.assertListEqual(mixed_5c.get_shape().as_list(),
[batch_size, 4, 4, 1024])
def testUnknownImageShape(self):
tf.reset_default_graph()
batch_size = 2
height, width = 224, 224
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception.inception_v1(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_5c']
feed_dict = {inputs: input_np}
tf.initialize_all_variables().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
def testUnknowBatchSize(self):
batch_size = 1
height, width = 224, 224
num_classes = 1000
inputs = tf.placeholder(tf.float32, (None, height, width, 3))
logits, _ = inception.inception_v1(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[None, num_classes])
images = tf.random_uniform((batch_size, height, width, 3))
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
output = sess.run(logits, {inputs: images.eval()})
self.assertEquals(output.shape, (batch_size, num_classes))
def testEvaluation(self):
batch_size = 2
height, width = 224, 224
num_classes = 1000
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = inception.inception_v1(eval_inputs, num_classes,
is_training=False)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
output = sess.run(predictions)
self.assertEquals(output.shape, (batch_size,))
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 224, 224
num_classes = 1000
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_v1(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_v1(eval_inputs, num_classes, reuse=True)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
def testLogitsNotSqueezed(self):
num_classes = 25
images = tf.random_uniform([1, 224, 224, 3])
logits, _ = inception.inception_v1(images,
num_classes=num_classes,
spatial_squeeze=False)
with self.test_session() as sess:
tf.initialize_all_variables().run()
logits_out = sess.run(logits)
self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])
if __name__ == '__main__':
tf.test.main()
This diff is collapsed.
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nets.inception_v2."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from nets import inception
slim = tf.contrib.slim
class InceptionV2Test(tf.test.TestCase):
def testBuildClassificationNetwork(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, end_points = inception.inception_v2(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue('Predictions' in end_points)
self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
[batch_size, num_classes])
def testBuildBaseNetwork(self):
batch_size = 5
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
mixed_5c, end_points = inception.inception_v2_base(inputs)
self.assertTrue(mixed_5c.op.name.startswith('InceptionV2/Mixed_5c'))
self.assertListEqual(mixed_5c.get_shape().as_list(),
[batch_size, 7, 7, 1024])
expected_endpoints = ['Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b',
'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a',
'Mixed_5b', 'Mixed_5c', 'Conv2d_1a_7x7',
'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3',
'MaxPool_3a_3x3']
self.assertItemsEqual(end_points.keys(), expected_endpoints)
def testBuildOnlyUptoFinalEndpoint(self):
batch_size = 5
height, width = 224, 224
endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e',
'Mixed_5a', 'Mixed_5b', 'Mixed_5c']
for index, endpoint in enumerate(endpoints):
with tf.Graph().as_default():
inputs = tf.random_uniform((batch_size, height, width, 3))
out_tensor, end_points = inception.inception_v2_base(
inputs, final_endpoint=endpoint)
self.assertTrue(out_tensor.op.name.startswith(
'InceptionV2/' + endpoint))
self.assertItemsEqual(endpoints[:index+1], end_points)
def testBuildAndCheckAllEndPointsUptoMixed5c(self):
batch_size = 5
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_v2_base(inputs,
final_endpoint='Mixed_5c')
endpoints_shapes = {'Mixed_3b': [batch_size, 28, 28, 256],
'Mixed_3c': [batch_size, 28, 28, 320],
'Mixed_4a': [batch_size, 14, 14, 576],
'Mixed_4b': [batch_size, 14, 14, 576],
'Mixed_4c': [batch_size, 14, 14, 576],
'Mixed_4d': [batch_size, 14, 14, 576],
'Mixed_4e': [batch_size, 14, 14, 576],
'Mixed_5a': [batch_size, 7, 7, 1024],
'Mixed_5b': [batch_size, 7, 7, 1024],
'Mixed_5c': [batch_size, 7, 7, 1024],
'Conv2d_1a_7x7': [batch_size, 112, 112, 64],
'MaxPool_2a_3x3': [batch_size, 56, 56, 64],
'Conv2d_2b_1x1': [batch_size, 56, 56, 64],
'Conv2d_2c_3x3': [batch_size, 56, 56, 192],
'MaxPool_3a_3x3': [batch_size, 28, 28, 192]}
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
for endpoint_name in endpoints_shapes:
expected_shape = endpoints_shapes[endpoint_name]
self.assertTrue(endpoint_name in end_points)
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
expected_shape)
def testModelHasExpectedNumberOfParameters(self):
batch_size = 5
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
with slim.arg_scope(inception.inception_v2_arg_scope()):
inception.inception_v2_base(inputs)
total_params, _ = slim.model_analyzer.analyze_vars(
slim.get_model_variables())
self.assertAlmostEqual(10173112, total_params)
def testBuildEndPointsWithDepthMultiplierLessThanOne(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_v2(inputs, num_classes)
endpoint_keys = [key for key in end_points.keys()
if key.startswith('Mixed') or key.startswith('Conv')]
_, end_points_with_multiplier = inception.inception_v2(
inputs, num_classes, scope='depth_multiplied_net',
depth_multiplier=0.5)
for key in endpoint_keys:
original_depth = end_points[key].get_shape().as_list()[3]
new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
self.assertEqual(0.5 * original_depth, new_depth)
def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_v2(inputs, num_classes)
endpoint_keys = [key for key in end_points.keys()
if key.startswith('Mixed') or key.startswith('Conv')]
_, end_points_with_multiplier = inception.inception_v2(
inputs, num_classes, scope='depth_multiplied_net',
depth_multiplier=2.0)
for key in endpoint_keys:
original_depth = end_points[key].get_shape().as_list()[3]
new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
self.assertEqual(2.0 * original_depth, new_depth)
def testRaiseValueErrorWithInvalidDepthMultiplier(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
with self.assertRaises(ValueError):
_ = inception.inception_v2(inputs, num_classes, depth_multiplier=-0.1)
with self.assertRaises(ValueError):
_ = inception.inception_v2(inputs, num_classes, depth_multiplier=0.0)
def testHalfSizeImages(self):
batch_size = 5
height, width = 112, 112
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, end_points = inception.inception_v2(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_5c']
self.assertListEqual(pre_pool.get_shape().as_list(),
[batch_size, 4, 4, 1024])
def testUnknownImageShape(self):
tf.reset_default_graph()
batch_size = 2
height, width = 224, 224
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception.inception_v2(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_5c']
feed_dict = {inputs: input_np}
tf.initialize_all_variables().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
def testUnknowBatchSize(self):
batch_size = 1
height, width = 224, 224
num_classes = 1000
inputs = tf.placeholder(tf.float32, (None, height, width, 3))
logits, _ = inception.inception_v2(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[None, num_classes])
images = tf.random_uniform((batch_size, height, width, 3))
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
output = sess.run(logits, {inputs: images.eval()})
self.assertEquals(output.shape, (batch_size, num_classes))
def testEvaluation(self):
batch_size = 2
height, width = 224, 224
num_classes = 1000
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = inception.inception_v2(eval_inputs, num_classes,
is_training=False)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
output = sess.run(predictions)
self.assertEquals(output.shape, (batch_size,))
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_v2(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_v2(eval_inputs, num_classes, reuse=True)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
def testLogitsNotSqueezed(self):
num_classes = 25
images = tf.random_uniform([1, 224, 224, 3])
logits, _ = inception.inception_v2(images,
num_classes=num_classes,
spatial_squeeze=False)
with self.test_session() as sess:
tf.initialize_all_variables().run()
logits_out = sess.run(logits)
self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])
if __name__ == '__main__':
tf.test.main()
This diff is collapsed.
This diff is collapsed.
......@@ -33,7 +33,8 @@ def lenet(images, num_classes=10, is_training=False,
interval of (-infinity, infinity). Consequently, to convert the outputs to a
probability distribution over the characters, one will need to convert them
using the softmax function:
logits = mnist.Mnist(images, is_training=False)
logits = lenet.lenet(images, is_training=False)
probabilities = tf.nn.softmax(logits)
predictions = tf.argmax(logits, 1)
......
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains a factory for building various models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import tensorflow as tf
from nets import alexnet
from nets import cifarnet
from nets import inception
from nets import lenet
from nets import overfeat
from nets import resnet_v1
from nets import resnet_v2
from nets import vgg
slim = tf.contrib.slim
networks_map = {'alexnet_v2': alexnet.alexnet_v2,
'cifarnet': cifarnet.cifarnet,
'overfeat': overfeat.overfeat,
'vgg_a': vgg.vgg_a,
'vgg_16': vgg.vgg_16,
'vgg_19': vgg.vgg_19,
'inception_v1': inception.inception_v1,
'inception_v2': inception.inception_v2,
'inception_v3': inception.inception_v3,
'inception_resnet_v2': inception.inception_resnet_v2,
'lenet': lenet.lenet,
'resnet_v1_50': resnet_v1.resnet_v1_50,
'resnet_v1_101': resnet_v1.resnet_v1_101,
'resnet_v1_152': resnet_v1.resnet_v1_152,
'resnet_v1_200': resnet_v1.resnet_v1_200,
'resnet_v2_50': resnet_v2.resnet_v2_50,
'resnet_v2_101': resnet_v2.resnet_v2_101,
'resnet_v2_152': resnet_v2.resnet_v2_152,
'resnet_v2_200': resnet_v2.resnet_v2_200,
}
arg_scopes_map = {'alexnet_v2': alexnet.alexnet_v2_arg_scope,
'cifarnet': cifarnet.cifarnet_arg_scope,
'overfeat': overfeat.overfeat_arg_scope,
'vgg_a': vgg.vgg_arg_scope,
'vgg_16': vgg.vgg_arg_scope,
'vgg_19': vgg.vgg_arg_scope,
'inception_v1': inception.inception_v3_arg_scope,
'inception_v2': inception.inception_v3_arg_scope,
'inception_v3': inception.inception_v3_arg_scope,
'inception_resnet_v2':
inception.inception_resnet_v2_arg_scope,
'lenet': lenet.lenet_arg_scope,
'resnet_v1_50': resnet_v1.resnet_arg_scope,
'resnet_v1_101': resnet_v1.resnet_arg_scope,
'resnet_v1_152': resnet_v1.resnet_arg_scope,
'resnet_v1_200': resnet_v1.resnet_arg_scope,
'resnet_v2_50': resnet_v2.resnet_arg_scope,
'resnet_v2_101': resnet_v2.resnet_arg_scope,
'resnet_v2_152': resnet_v2.resnet_arg_scope,
'resnet_v2_200': resnet_v2.resnet_arg_scope,
}
def get_network_fn(name, num_classes, weight_decay=0.0, is_training=False):
"""Returns a network_fn such as `logits, end_points = network_fn(images)`.
Args:
name: The name of the network.
num_classes: The number of classes to use for classification.
weight_decay: The l2 coefficient for the model weights.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
network_fn: A function that applies the model to a batch of images. It has
the following signature:
logits, end_points = network_fn(images)
Raises:
ValueError: If network `name` is not recognized.
"""
if name not in networks_map:
raise ValueError('Name of network unknown %s' % name)
arg_scope = arg_scopes_map[name](weight_decay=weight_decay)
func = networks_map[name]
@functools.wraps(func)
def network_fn(images):
with slim.arg_scope(arg_scope):
return func(images, num_classes, is_training=is_training)
if hasattr(func, 'default_image_size'):
network_fn.default_image_size = func.default_image_size
return network_fn
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.inception."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from nets import nets_factory
class NetworksTest(tf.test.TestCase):
def testGetNetworkFn(self):
batch_size = 5
num_classes = 1000
for net in nets_factory.networks_map:
with self.test_session():
net_fn = nets_factory.get_network_fn(net, num_classes)
# Most networks use 224 as their default_image_size
image_size = getattr(net_fn, 'default_image_size', 224)
inputs = tf.random_uniform((batch_size, image_size, image_size, 3))
logits, end_points = net_fn(inputs)
self.assertTrue(isinstance(logits, tf.Tensor))
self.assertTrue(isinstance(end_points, dict))
self.assertEqual(logits.get_shape().as_list()[0], batch_size)
self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
if __name__ == '__main__':
tf.test.main()
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment