Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
b95885ec
"vscode:/vscode.git/clone" did not exist on "059711633041b73ac3ed3c3b287eee8667092f3f"
Commit
b95885ec
authored
May 26, 2021
by
Yeqing Li
Committed by
A. Unique TensorFlower
May 26, 2021
Browse files
Adds yaml file for training on k600.
PiperOrigin-RevId: 376094072
parent
27be57eb
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
112 additions
and
0 deletions
+112
-0
official/vision/beta/configs/experiments/video_classification/k600_3d-resnet50g_tpu.yaml
...periments/video_classification/k600_3d-resnet50g_tpu.yaml
+112
-0
No files found.
official/vision/beta/configs/experiments/video_classification/k600_3d-resnet50g_tpu.yaml
0 → 100644
View file @
b95885ec
# 3D ResNet-50g video classification on Kinetics-600.
#
# --experiment_type=video_classification_kinetics600
# Expected accuracy: 78.7% accuracy, 93.6% top-5.
# Train on TPU: v3-128, eval on TPU: v3-32
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
init_checkpoint
:
null
init_checkpoint_modules
:
all
losses
:
l2_weight_decay
:
0.0001
label_smoothing
:
0.0
model
:
aggregate_endpoints
:
false
backbone
:
resnet_3d
:
block_specs
:
!!python/tuple
-
temporal_kernel_sizes
:
!!python/tuple
-
3
-
3
-
3
temporal_strides
:
1
use_self_gating
:
true
-
temporal_kernel_sizes
:
!!python/tuple
-
3
-
1
-
3
-
1
temporal_strides
:
1
use_self_gating
:
true
-
temporal_kernel_sizes
:
!!python/tuple
-
3
-
1
-
3
-
1
-
3
-
1
temporal_strides
:
1
use_self_gating
:
true
-
temporal_kernel_sizes
:
!!python/tuple
-
1
-
3
-
1
temporal_strides
:
1
use_self_gating
:
true
model_id
:
50
stem_conv_temporal_kernel_size
:
5
stem_conv_temporal_stride
:
2
stem_pool_temporal_stride
:
2
stem_type
:
v0
stochastic_depth_drop_rate
:
0.0
type
:
resnet_3d
dropout_rate
:
0.2
model_type
:
video_classification
norm_activation
:
activation
:
relu
norm_epsilon
:
1.0e-05
norm_momentum
:
0.9
use_sync_bn
:
false
train_data
:
aug_max_area_ratio
:
1.0
aug_max_aspect_ratio
:
2.0
aug_min_area_ratio
:
0.49
aug_min_aspect_ratio
:
0.5
drop_remainder
:
true
dtype
:
'
bfloat16'
feature_shape
:
!!python/tuple
-
64
-
224
-
224
-
3
global_batch_size
:
1024
min_image_size
:
256
name
:
kinetics600
num_classes
:
600
split
:
train
validation_data
:
dtype
:
'
bfloat16'
feature_shape
:
!!python/tuple
-
250
-
224
-
224
-
3
global_batch_size
:
64
min_image_size
:
256
name
:
kinetics600
num_classes
:
600
num_examples
:
27780
num_test_clips
:
1
num_test_crops
:
1
one_hot
:
true
trainer
:
optimizer_config
:
learning_rate
:
cosine
:
alpha
:
0.0
decay_steps
:
71400
initial_learning_rate
:
1.6
name
:
CosineDecay
type
:
cosine
warmup
:
linear
:
name
:
linear
warmup_learning_rate
:
0
warmup_steps
:
1785
type
:
linear
train_steps
:
71400
steps_per_loop
:
500
summary_interval
:
500
validation_interval
:
500
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment