Commit b5574d2a authored by Christopher Shallue's avatar Christopher Shallue
Browse files

Replace dict.iteritems() with dict.items() for Python3 compatibility

parent f5a953c8
...@@ -130,7 +130,7 @@ class AstroCNNModel(astro_model.AstroModel): ...@@ -130,7 +130,7 @@ class AstroCNNModel(astro_model.AstroModel):
self.time_series_hidden_layers self.time_series_hidden_layers
""" """
time_series_hidden_layers = {} time_series_hidden_layers = {}
for name, time_series in self.time_series_features.iteritems(): for name, time_series in self.time_series_features.items():
time_series_hidden_layers[name] = self._build_cnn_layers( time_series_hidden_layers[name] = self._build_cnn_layers(
inputs=time_series, inputs=time_series,
hparams=self.hparams.time_series_hidden[name], hparams=self.hparams.time_series_hidden[name],
......
...@@ -151,7 +151,7 @@ class AstroFCModel(astro_model.AstroModel): ...@@ -151,7 +151,7 @@ class AstroFCModel(astro_model.AstroModel):
self.time_series_hidden_layers self.time_series_hidden_layers
""" """
time_series_hidden_layers = {} time_series_hidden_layers = {}
for name, time_series in self.time_series_features.iteritems(): for name, time_series in self.time_series_features.items():
time_series_hidden_layers[name] = self._build_local_fc_layers( time_series_hidden_layers[name] = self._build_local_fc_layers(
inputs=time_series, inputs=time_series,
hparams=self.hparams.time_series_hidden[name], hparams=self.hparams.time_series_hidden[name],
......
...@@ -180,7 +180,7 @@ def _process_tce(tce): ...@@ -180,7 +180,7 @@ def _process_tce(tce):
_set_float_feature(ex, "local_view", local_view) _set_float_feature(ex, "local_view", local_view)
# Set other columns. # Set other columns.
for col_name, value in tce.iteritems(): for col_name, value in tce.items():
if np.issubdtype(type(value), np.integer): if np.issubdtype(type(value), np.integer):
_set_int64_feature(ex, col_name, [value]) _set_int64_feature(ex, col_name, [value])
else: else:
......
...@@ -60,7 +60,7 @@ def _recursive_pad_to_batch_size(tensor_or_collection, batch_size): ...@@ -60,7 +60,7 @@ def _recursive_pad_to_batch_size(tensor_or_collection, batch_size):
if isinstance(tensor_or_collection, dict): if isinstance(tensor_or_collection, dict):
return { return {
name: _recursive_pad_to_batch_size(t, batch_size) name: _recursive_pad_to_batch_size(t, batch_size)
for name, t in tensor_or_collection.iteritems() for name, t in tensor_or_collection.items()
} }
if isinstance(tensor_or_collection, collections.Iterable): if isinstance(tensor_or_collection, collections.Iterable):
...@@ -197,7 +197,7 @@ def build_dataset(file_pattern, ...@@ -197,7 +197,7 @@ def build_dataset(file_pattern,
# Set specifications for parsing the features. # Set specifications for parsing the features.
data_fields = { data_fields = {
feature_name: tf.FixedLenFeature([feature.length], tf.float32) feature_name: tf.FixedLenFeature([feature.length], tf.float32)
for feature_name, feature in input_config.features.iteritems() for feature_name, feature in input_config.features.items()
} }
if include_labels: if include_labels:
data_fields[input_config.label_feature] = tf.FixedLenFeature([], data_fields[input_config.label_feature] = tf.FixedLenFeature([],
...@@ -217,7 +217,7 @@ def build_dataset(file_pattern, ...@@ -217,7 +217,7 @@ def build_dataset(file_pattern,
# Reorganize outputs. # Reorganize outputs.
output = {} output = {}
for feature_name, value in parsed_features.iteritems(): for feature_name, value in parsed_features.items():
if include_labels and feature_name == input_config.label_feature: if include_labels and feature_name == input_config.label_feature:
label_id = label_to_id.lookup(value) label_id = label_to_id.lookup(value)
# Ensure that the label_id is nonnegative to verify a successful hash # Ensure that the label_id is nonnegative to verify a successful hash
......
...@@ -37,9 +37,9 @@ def prepare_feed_dict(model, features, labels=None, is_training=None): ...@@ -37,9 +37,9 @@ def prepare_feed_dict(model, features, labels=None, is_training=None):
feed_dict: A dictionary of input Tensor to numpy array. feed_dict: A dictionary of input Tensor to numpy array.
""" """
feed_dict = {} feed_dict = {}
for feature, tensor in model.time_series_features.iteritems(): for feature, tensor in model.time_series_features.items():
feed_dict[tensor] = features["time_series_features"][feature] feed_dict[tensor] = features["time_series_features"][feature]
for feature, tensor in model.aux_features.iteritems(): for feature, tensor in model.aux_features.items():
feed_dict[tensor] = features["aux_features"][feature] feed_dict[tensor] = features["aux_features"][feature]
if labels is not None: if labels is not None:
...@@ -65,7 +65,7 @@ def build_feature_placeholders(config): ...@@ -65,7 +65,7 @@ def build_feature_placeholders(config):
""" """
batch_size = None # Batch size will be dynamically specified. batch_size = None # Batch size will be dynamically specified.
features = {"time_series_features": {}, "aux_features": {}} features = {"time_series_features": {}, "aux_features": {}}
for feature_name, feature_spec in config.iteritems(): for feature_name, feature_spec in config.items():
placeholder = tf.placeholder( placeholder = tf.placeholder(
dtype=tf.float32, dtype=tf.float32,
shape=[batch_size, feature_spec.length], shape=[batch_size, feature_spec.length],
......
...@@ -39,7 +39,7 @@ class InputOpsTest(tf.test.TestCase): ...@@ -39,7 +39,7 @@ class InputOpsTest(tf.test.TestCase):
for feature_type in features: for feature_type in features:
actual_shapes[feature_type] = { actual_shapes[feature_type] = {
feature: tensor.shape.as_list() feature: tensor.shape.as_list()
for feature, tensor in features[feature_type].iteritems() for feature, tensor in features[feature_type].items()
} }
self.assertDictEqual(expected_shapes, actual_shapes) self.assertDictEqual(expected_shapes, actual_shapes)
......
...@@ -50,11 +50,11 @@ def fake_features(feature_spec, batch_size): ...@@ -50,11 +50,11 @@ def fake_features(feature_spec, batch_size):
features = {} features = {}
features["time_series_features"] = { features["time_series_features"] = {
name: np.random.random([batch_size, spec["length"]]) name: np.random.random([batch_size, spec["length"]])
for name, spec in feature_spec.iteritems() if spec["is_time_series"] for name, spec in feature_spec.items() if spec["is_time_series"]
} }
features["aux_features"] = { features["aux_features"] = {
name: np.random.random([batch_size, spec["length"]]) name: np.random.random([batch_size, spec["length"]])
for name, spec in feature_spec.iteritems() if not spec["is_time_series"] for name, spec in feature_spec.items() if not spec["is_time_series"]
} }
return features return features
......
...@@ -110,7 +110,7 @@ def unflatten(flat_config): ...@@ -110,7 +110,7 @@ def unflatten(flat_config):
A dictionary nested according to the keys of the input dictionary. A dictionary nested according to the keys of the input dictionary.
""" """
config = {} config = {}
for path, value in flat_config.iteritems(): for path, value in flat_config.items():
path = path.split(".") path = path.split(".")
final_key = path.pop() final_key = path.pop()
nested_config = config nested_config = config
......
...@@ -41,7 +41,7 @@ class ConfigDict(dict): ...@@ -41,7 +41,7 @@ class ConfigDict(dict):
parameters. parameters.
""" """
if initial_dictionary: if initial_dictionary:
for field, value in initial_dictionary.iteritems(): for field, value in initial_dictionary.items():
initial_dictionary[field] = _maybe_convert_dict(value) initial_dictionary[field] = _maybe_convert_dict(value)
super(ConfigDict, self).__init__(initial_dictionary) super(ConfigDict, self).__init__(initial_dictionary)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment