Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
b3e4fefd
Commit
b3e4fefd
authored
Jun 19, 2020
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Jun 19, 2020
Browse files
Support numpy-based metrics through Orbit.
PiperOrigin-RevId: 317432167
parent
b708fd68
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
102 additions
and
10 deletions
+102
-10
official/core/base_task.py
official/core/base_task.py
+8
-0
official/nlp/tasks/sentence_prediction.py
official/nlp/tasks/sentence_prediction.py
+57
-1
official/nlp/tasks/sentence_prediction_test.py
official/nlp/tasks/sentence_prediction_test.py
+37
-9
No files found.
official/core/base_task.py
View file @
b3e4fefd
...
@@ -247,6 +247,14 @@ class Task(tf.Module):
...
@@ -247,6 +247,14 @@ class Task(tf.Module):
"""Performs the forward step."""
"""Performs the forward step."""
return
model
(
inputs
,
training
=
False
)
return
model
(
inputs
,
training
=
False
)
def
aggregate_logs
(
self
,
state
,
step_logs
):
"""Optional aggregation over logs returned from a validation step."""
pass
def
reduce_aggregated_logs
(
self
,
aggregated_logs
):
"""Optional reduce of aggregated logs over validation steps."""
return
{}
_REGISTERED_TASK_CLS
=
{}
_REGISTERED_TASK_CLS
=
{}
...
...
official/nlp/tasks/sentence_prediction.py
View file @
b3e4fefd
...
@@ -14,8 +14,11 @@
...
@@ -14,8 +14,11 @@
# limitations under the License.
# limitations under the License.
# ==============================================================================
# ==============================================================================
"""Sentence prediction (classification) task."""
"""Sentence prediction (classification) task."""
import
logging
from
absl
import
logging
import
dataclasses
import
dataclasses
import
numpy
as
np
from
scipy
import
stats
from
sklearn
import
metrics
as
sklearn_metrics
import
tensorflow
as
tf
import
tensorflow
as
tf
import
tensorflow_hub
as
hub
import
tensorflow_hub
as
hub
...
@@ -33,6 +36,7 @@ class SentencePredictionConfig(cfg.TaskConfig):
...
@@ -33,6 +36,7 @@ class SentencePredictionConfig(cfg.TaskConfig):
# be specified.
# be specified.
init_checkpoint
:
str
=
''
init_checkpoint
:
str
=
''
hub_module_url
:
str
=
''
hub_module_url
:
str
=
''
metric_type
:
str
=
'accuracy'
network
:
bert
.
BertPretrainerConfig
=
bert
.
BertPretrainerConfig
(
network
:
bert
.
BertPretrainerConfig
=
bert
.
BertPretrainerConfig
(
num_masked_tokens
=
0
,
# No masked language modeling head.
num_masked_tokens
=
0
,
# No masked language modeling head.
cls_heads
=
[
cls_heads
=
[
...
@@ -59,6 +63,7 @@ class SentencePredictionTask(base_task.Task):
...
@@ -59,6 +63,7 @@ class SentencePredictionTask(base_task.Task):
self
.
_hub_module
=
hub
.
load
(
params
.
hub_module_url
)
self
.
_hub_module
=
hub
.
load
(
params
.
hub_module_url
)
else
:
else
:
self
.
_hub_module
=
None
self
.
_hub_module
=
None
self
.
metric_type
=
params
.
metric_type
def
build_model
(
self
):
def
build_model
(
self
):
if
self
.
_hub_module
:
if
self
.
_hub_module
:
...
@@ -123,6 +128,57 @@ class SentencePredictionTask(base_task.Task):
...
@@ -123,6 +128,57 @@ class SentencePredictionTask(base_task.Task):
def
process_compiled_metrics
(
self
,
compiled_metrics
,
labels
,
model_outputs
):
def
process_compiled_metrics
(
self
,
compiled_metrics
,
labels
,
model_outputs
):
compiled_metrics
.
update_state
(
labels
,
model_outputs
[
'sentence_prediction'
])
compiled_metrics
.
update_state
(
labels
,
model_outputs
[
'sentence_prediction'
])
def
validation_step
(
self
,
inputs
,
model
:
tf
.
keras
.
Model
,
metrics
=
None
):
if
self
.
metric_type
==
'accuracy'
:
return
super
(
SentencePredictionTask
,
self
).
validation_step
(
inputs
,
model
,
metrics
)
features
,
labels
=
inputs
outputs
=
self
.
inference_step
(
features
,
model
)
loss
=
self
.
build_losses
(
labels
=
labels
,
model_outputs
=
outputs
,
aux_losses
=
model
.
losses
)
if
self
.
metric_type
==
'matthews_corrcoef'
:
return
{
self
.
loss
:
loss
,
'sentence_prediction'
:
tf
.
expand_dims
(
tf
.
math
.
argmax
(
outputs
[
'sentence_prediction'
],
axis
=
1
),
axis
=
0
),
'labels'
:
labels
,
}
if
self
.
metric_type
==
'pearson_spearman_corr'
:
return
{
self
.
loss
:
loss
,
'sentence_prediction'
:
outputs
[
'sentence_prediction'
],
'labels'
:
labels
,
}
def
aggregate_logs
(
self
,
state
=
None
,
step_outputs
=
None
):
if
state
is
None
:
state
=
{
'sentence_prediction'
:
[],
'labels'
:
[]}
state
[
'sentence_prediction'
].
append
(
np
.
concatenate
([
v
.
numpy
()
for
v
in
step_outputs
[
'sentence_prediction'
]],
axis
=
0
))
state
[
'labels'
].
append
(
np
.
concatenate
([
v
.
numpy
()
for
v
in
step_outputs
[
'labels'
]],
axis
=
0
))
return
state
def
reduce_aggregated_logs
(
self
,
aggregated_logs
):
if
self
.
metric_type
==
'matthews_corrcoef'
:
preds
=
np
.
concatenate
(
aggregated_logs
[
'sentence_prediction'
],
axis
=
0
)
labels
=
np
.
concatenate
(
aggregated_logs
[
'labels'
],
axis
=
0
)
return
{
self
.
metric_type
:
sklearn_metrics
.
matthews_corrcoef
(
preds
,
labels
)
}
if
self
.
metric_type
==
'pearson_spearman_corr'
:
preds
=
np
.
concatenate
(
aggregated_logs
[
'sentence_prediction'
],
axis
=
0
)
labels
=
np
.
concatenate
(
aggregated_logs
[
'labels'
],
axis
=
0
)
pearson_corr
=
stats
.
pearsonr
(
preds
,
labels
)[
0
]
spearman_corr
=
stats
.
spearmanr
(
preds
,
labels
)[
0
]
corr_metric
=
(
pearson_corr
+
spearman_corr
)
/
2
return
{
self
.
metric_type
:
corr_metric
}
def
initialize
(
self
,
model
):
def
initialize
(
self
,
model
):
"""Load a pretrained checkpoint (if exists) and then train from iter 0."""
"""Load a pretrained checkpoint (if exists) and then train from iter 0."""
ckpt_dir_or_file
=
self
.
task_config
.
init_checkpoint
ckpt_dir_or_file
=
self
.
task_config
.
init_checkpoint
...
...
official/nlp/tasks/sentence_prediction_test.py
View file @
b3e4fefd
...
@@ -16,6 +16,8 @@
...
@@ -16,6 +16,8 @@
"""Tests for official.nlp.tasks.sentence_prediction."""
"""Tests for official.nlp.tasks.sentence_prediction."""
import
functools
import
functools
import
os
import
os
from
absl.testing
import
parameterized
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.nlp.bert
import
configs
from
official.nlp.bert
import
configs
...
@@ -25,20 +27,24 @@ from official.nlp.configs import encoders
...
@@ -25,20 +27,24 @@ from official.nlp.configs import encoders
from
official.nlp.tasks
import
sentence_prediction
from
official.nlp.tasks
import
sentence_prediction
class
SentencePredictionTaskTest
(
tf
.
test
.
TestCase
):
class
SentencePredictionTaskTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
super
(
SentencePredictionTaskTest
,
self
).
setUp
()
super
(
SentencePredictionTaskTest
,
self
).
setUp
()
self
.
_network_config
=
bert
.
BertPretrainerConfig
(
self
.
_train_data_config
=
bert
.
SentencePredictionDataConfig
(
input_path
=
"dummy"
,
seq_length
=
128
,
global_batch_size
=
1
)
def
get_network_config
(
self
,
num_classes
):
return
bert
.
BertPretrainerConfig
(
encoder
=
encoders
.
TransformerEncoderConfig
(
encoder
=
encoders
.
TransformerEncoderConfig
(
vocab_size
=
30522
,
num_layers
=
1
),
vocab_size
=
30522
,
num_layers
=
1
),
num_masked_tokens
=
0
,
num_masked_tokens
=
0
,
cls_heads
=
[
cls_heads
=
[
bert
.
ClsHeadConfig
(
bert
.
ClsHeadConfig
(
inner_dim
=
10
,
num_classes
=
3
,
name
=
"sentence_prediction"
)
inner_dim
=
10
,
num_classes
=
num_classes
,
name
=
"sentence_prediction"
)
])
])
self
.
_train_data_config
=
bert
.
SentencePredictionDataConfig
(
input_path
=
"dummy"
,
seq_length
=
128
,
global_batch_size
=
1
)
def
_run_task
(
self
,
config
):
def
_run_task
(
self
,
config
):
task
=
sentence_prediction
.
SentencePredictionTask
(
config
)
task
=
sentence_prediction
.
SentencePredictionTask
(
config
)
...
@@ -57,7 +63,7 @@ class SentencePredictionTaskTest(tf.test.TestCase):
...
@@ -57,7 +63,7 @@ class SentencePredictionTaskTest(tf.test.TestCase):
def
test_task
(
self
):
def
test_task
(
self
):
config
=
sentence_prediction
.
SentencePredictionConfig
(
config
=
sentence_prediction
.
SentencePredictionConfig
(
init_checkpoint
=
self
.
get_temp_dir
(),
init_checkpoint
=
self
.
get_temp_dir
(),
network
=
self
.
_network_config
,
network
=
self
.
get
_network_config
(
2
)
,
train_data
=
self
.
_train_data_config
)
train_data
=
self
.
_train_data_config
)
task
=
sentence_prediction
.
SentencePredictionTask
(
config
)
task
=
sentence_prediction
.
SentencePredictionTask
(
config
)
model
=
task
.
build_model
()
model
=
task
.
build_model
()
...
@@ -84,12 +90,34 @@ class SentencePredictionTaskTest(tf.test.TestCase):
...
@@ -84,12 +90,34 @@ class SentencePredictionTaskTest(tf.test.TestCase):
ckpt
.
save
(
config
.
init_checkpoint
)
ckpt
.
save
(
config
.
init_checkpoint
)
task
.
initialize
(
model
)
task
.
initialize
(
model
)
def
test_task_with_fit
(
self
):
@
parameterized
.
parameters
((
"matthews_corrcoef"
,
2
),
(
"pearson_spearman_corr"
,
1
))
def
test_np_metrics
(
self
,
metric_type
,
num_classes
):
config
=
sentence_prediction
.
SentencePredictionConfig
(
config
=
sentence_prediction
.
SentencePredictionConfig
(
network
=
self
.
_network_config
,
metric_type
=
metric_type
,
init_checkpoint
=
self
.
get_temp_dir
(),
network
=
self
.
get_network_config
(
num_classes
),
train_data
=
self
.
_train_data_config
)
train_data
=
self
.
_train_data_config
)
task
=
sentence_prediction
.
SentencePredictionTask
(
config
)
task
=
sentence_prediction
.
SentencePredictionTask
(
config
)
model
=
task
.
build_model
()
model
=
task
.
build_model
()
dataset
=
task
.
build_inputs
(
config
.
train_data
)
iterator
=
iter
(
dataset
)
strategy
=
tf
.
distribute
.
get_strategy
()
distributed_outputs
=
strategy
.
run
(
functools
.
partial
(
task
.
validation_step
,
model
=
model
),
args
=
(
next
(
iterator
),))
outputs
=
tf
.
nest
.
map_structure
(
strategy
.
experimental_local_results
,
distributed_outputs
)
aggregated
=
task
.
aggregate_logs
(
step_outputs
=
outputs
)
aggregated
=
task
.
aggregate_logs
(
state
=
aggregated
,
step_outputs
=
outputs
)
self
.
assertIn
(
metric_type
,
task
.
reduce_aggregated_logs
(
aggregated
))
def
test_task_with_fit
(
self
):
config
=
sentence_prediction
.
SentencePredictionConfig
(
network
=
self
.
get_network_config
(
2
),
train_data
=
self
.
_train_data_config
)
task
=
sentence_prediction
.
SentencePredictionTask
(
config
)
model
=
task
.
build_model
()
model
=
task
.
compile_model
(
model
=
task
.
compile_model
(
model
,
model
,
optimizer
=
tf
.
keras
.
optimizers
.
SGD
(
lr
=
0.1
),
optimizer
=
tf
.
keras
.
optimizers
.
SGD
(
lr
=
0.1
),
...
@@ -126,7 +154,7 @@ class SentencePredictionTaskTest(tf.test.TestCase):
...
@@ -126,7 +154,7 @@ class SentencePredictionTaskTest(tf.test.TestCase):
hub_module_url
=
self
.
_export_bert_tfhub
()
hub_module_url
=
self
.
_export_bert_tfhub
()
config
=
sentence_prediction
.
SentencePredictionConfig
(
config
=
sentence_prediction
.
SentencePredictionConfig
(
hub_module_url
=
hub_module_url
,
hub_module_url
=
hub_module_url
,
network
=
self
.
_network_config
,
network
=
self
.
get
_network_config
(
2
)
,
train_data
=
self
.
_train_data_config
)
train_data
=
self
.
_train_data_config
)
self
.
_run_task
(
config
)
self
.
_run_task
(
config
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment