Commit b1025b3b authored by syiming's avatar syiming
Browse files

Merge remote-tracking branch 'upstream/master' into fasterrcnn_fpn_keras_feature_extractor

parents 69ce1c45 e9df75ab
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for ssd resnet v1 FPN feature extractors."""
import unittest
import tensorflow.compat.v1 as tf
from object_detection.models import ssd_resnet_v1_fpn_feature_extractor_testbase
from object_detection.models import ssd_resnet_v1_fpn_keras_feature_extractor
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class SSDResnet50V1FeatureExtractorTest(
ssd_resnet_v1_fpn_feature_extractor_testbase.
SSDResnetFPNFeatureExtractorTestBase):
"""SSDResnet50v1Fpn feature extractor test."""
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
use_explicit_padding=False, min_depth=32,
use_keras=True):
is_training = True
return (ssd_resnet_v1_fpn_keras_feature_extractor.
SSDResNet50V1FpnKerasFeatureExtractor(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=self._build_conv_hyperparams(
add_batch_norm=False),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
name='ResNet50V1_FPN'))
def _resnet_scope_name(self):
return 'ResNet50V1_FPN'
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class SSDResnet101V1FeatureExtractorTest(
ssd_resnet_v1_fpn_feature_extractor_testbase.
SSDResnetFPNFeatureExtractorTestBase):
"""SSDResnet101v1Fpn feature extractor test."""
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
use_explicit_padding=False, min_depth=32,
use_keras=False):
is_training = True
return (ssd_resnet_v1_fpn_keras_feature_extractor.
SSDResNet101V1FpnKerasFeatureExtractor(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=self._build_conv_hyperparams(
add_batch_norm=False),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
name='ResNet101V1_FPN'))
def _resnet_scope_name(self):
return 'ResNet101V1_FPN'
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class SSDResnet152V1FeatureExtractorTest(
ssd_resnet_v1_fpn_feature_extractor_testbase.
SSDResnetFPNFeatureExtractorTestBase):
"""SSDResnet152v1Fpn feature extractor test."""
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
use_explicit_padding=False, min_depth=32,
use_keras=False):
is_training = True
return (ssd_resnet_v1_fpn_keras_feature_extractor.
SSDResNet152V1FpnKerasFeatureExtractor(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=self._build_conv_hyperparams(
add_batch_norm=False),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
name='ResNet152V1_FPN'))
def _resnet_scope_name(self):
return 'ResNet152V1_FPN'
if __name__ == '__main__':
tf.test.main()
......@@ -13,12 +13,15 @@
# limitations under the License.
# ==============================================================================
"""Tests for ssd resnet v1 feature extractors."""
import unittest
import tensorflow.compat.v1 as tf
from object_detection.models import ssd_resnet_v1_ppn_feature_extractor
from object_detection.models import ssd_resnet_v1_ppn_feature_extractor_testbase
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class SSDResnet50V1PpnFeatureExtractorTest(
ssd_resnet_v1_ppn_feature_extractor_testbase.
SSDResnetPpnFeatureExtractorTestBase):
......@@ -40,6 +43,7 @@ class SSDResnet50V1PpnFeatureExtractorTest(
return 'resnet_v1_50'
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class SSDResnet101V1PpnFeatureExtractorTest(
ssd_resnet_v1_ppn_feature_extractor_testbase.
SSDResnetPpnFeatureExtractorTestBase):
......@@ -62,6 +66,7 @@ class SSDResnet101V1PpnFeatureExtractorTest(
return 'resnet_v1_101'
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class SSDResnet152V1PpnFeatureExtractorTest(
ssd_resnet_v1_ppn_feature_extractor_testbase.
SSDResnetPpnFeatureExtractorTestBase):
......
......@@ -19,7 +19,7 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
from absl.testing import parameterized
import numpy as np
from six.moves import range
......@@ -35,8 +35,10 @@ from object_detection.predictors.heads import class_head
from object_detection.predictors.heads import mask_head
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class ConvolutionalBoxPredictorTest(test_case.TestCase):
def _build_arg_scope_with_conv_hyperparams(self):
......@@ -281,6 +283,7 @@ class ConvolutionalBoxPredictorTest(test_case.TestCase):
self.assertEqual(bad_dangling_ops, [])
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class WeightSharedConvolutionalBoxPredictorTest(test_case.TestCase):
def _build_arg_scope_with_conv_hyperparams(self):
......
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.convolutional_keras_box_predictor."""
import unittest
import numpy as np
import tensorflow.compat.v1 as tf
......@@ -26,8 +27,10 @@ from object_detection.predictors.heads import keras_class_head
from object_detection.predictors.heads import keras_mask_head
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class ConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def _build_conv_hyperparams(self):
......@@ -47,23 +50,23 @@ class ConvolutionalKerasBoxPredictorTest(test_case.TestCase):
return hyperparams_builder.KerasLayerHyperparams(conv_hyperparams)
def test_get_boxes_for_five_aspect_ratios_per_location(self):
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
def graph_fn(image_features):
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
......@@ -78,23 +81,23 @@ class ConvolutionalKerasBoxPredictorTest(test_case.TestCase):
self.assertAllEqual(objectness_predictions.shape, [4, 320, 1])
def test_get_boxes_for_one_aspect_ratio_per_location(self):
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[1],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
def graph_fn(image_features):
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[1],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
......@@ -111,23 +114,23 @@ class ConvolutionalKerasBoxPredictorTest(test_case.TestCase):
self):
num_classes_without_background = 6
image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
def graph_fn(image_features):
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
......@@ -144,7 +147,7 @@ class ConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def test_get_predictions_with_feature_maps_of_dynamic_shape(
self):
image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64])
tf.keras.backend.clear_session()
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
......@@ -161,28 +164,25 @@ class ConvolutionalKerasBoxPredictorTest(test_case.TestCase):
kernel_size=1,
box_code_size=4
))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
init_op = tf.global_variables_initializer()
variables = []
def graph_fn(image_features):
box_predictions = conv_box_predictor([image_features])
variables.extend(list(conv_box_predictor.variables))
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
return box_encodings, objectness_predictions
resolution = 32
expected_num_anchors = resolution*resolution*5
with self.test_session() as sess:
sess.run(init_op)
(box_encodings_shape,
objectness_predictions_shape) = sess.run(
[tf.shape(box_encodings), tf.shape(objectness_predictions)],
feed_dict={image_features:
np.random.rand(4, resolution, resolution, 64)})
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4])
self.assertAllEqual(objectness_predictions_shape,
[4, expected_num_anchors, 1])
box_encodings, objectness_predictions = self.execute(
graph_fn, [np.random.rand(4, resolution, resolution, 64)])
actual_variable_set = set([var.name.split(':')[0] for var in variables])
self.assertAllEqual(box_encodings.shape, [4, expected_num_anchors, 1, 4])
self.assertAllEqual(objectness_predictions.shape,
[4, expected_num_anchors, 1])
expected_variable_set = set([
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/bias',
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/kernel',
......@@ -195,7 +195,7 @@ class ConvolutionalKerasBoxPredictorTest(test_case.TestCase):
['box_encodings', 'class_predictions_with_background'])
def test_use_depthwise_convolution(self):
image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64])
tf.keras.backend.clear_session()
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
......@@ -213,27 +213,25 @@ class ConvolutionalKerasBoxPredictorTest(test_case.TestCase):
box_code_size=4,
use_depthwise=True
))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
init_op = tf.global_variables_initializer()
variables = []
def graph_fn(image_features):
box_predictions = conv_box_predictor([image_features])
variables.extend(list(conv_box_predictor.variables))
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
return box_encodings, objectness_predictions
resolution = 32
expected_num_anchors = resolution*resolution*5
with self.test_session() as sess:
sess.run(init_op)
(box_encodings_shape,
objectness_predictions_shape) = sess.run(
[tf.shape(box_encodings), tf.shape(objectness_predictions)],
feed_dict={image_features:
np.random.rand(4, resolution, resolution, 64)})
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4])
self.assertAllEqual(objectness_predictions_shape,
box_encodings, objectness_predictions = self.execute(
graph_fn, [np.random.rand(4, resolution, resolution, 64)])
actual_variable_set = set([var.name.split(':')[0] for var in variables])
self.assertAllEqual(box_encodings.shape, [4, expected_num_anchors, 1, 4])
self.assertAllEqual(objectness_predictions.shape,
[4, expected_num_anchors, 1])
expected_variable_set = set([
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/bias',
......@@ -259,6 +257,7 @@ class ConvolutionalKerasBoxPredictorTest(test_case.TestCase):
['box_encodings', 'class_predictions_with_background'])
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def _build_conv_hyperparams(self, add_batch_norm=True):
......@@ -288,19 +287,20 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
# pylint: disable=line-too-long
def test_get_boxes_for_five_aspect_ratios_per_location(self):
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
depth=32,
num_layers_before_predictor=1,
box_code_size=4))
def graph_fn(image_features):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
depth=32,
num_layers_before_predictor=1,
box_code_size=4))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
......@@ -314,20 +314,21 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
self.assertAllEqual(objectness_predictions.shape, [4, 320, 1])
def test_bias_predictions_to_background_with_sigmoid_score_conversion(self):
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=True,
num_classes=2,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
depth=32,
num_layers_before_predictor=1,
class_prediction_bias_init=-4.6,
box_code_size=4))
def graph_fn(image_features):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=True,
num_classes=2,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
depth=32,
num_layers_before_predictor=1,
class_prediction_bias_init=-4.6,
box_code_size=4))
box_predictions = conv_box_predictor([image_features])
class_predictions = tf.concat(box_predictions[
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1)
......@@ -339,20 +340,21 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location(
self):
num_classes_without_background = 6
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
depth=32,
num_layers_before_predictor=1,
box_code_size=4))
def graph_fn(image_features):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
depth=32,
num_layers_before_predictor=1,
box_code_size=4))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
......@@ -369,20 +371,21 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def test_get_multi_class_predictions_from_two_feature_maps(
self):
num_classes_without_background = 6
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=1,
box_code_size=4))
def graph_fn(image_features1, image_features2):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=1,
box_code_size=4))
box_predictions = conv_box_predictor([image_features1, image_features2])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
......@@ -401,20 +404,21 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def test_get_multi_class_predictions_from_feature_maps_of_different_depth(
self):
num_classes_without_background = 6
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5, 5],
depth=32,
num_layers_before_predictor=1,
box_code_size=4))
def graph_fn(image_features1, image_features2, image_features3):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5, 5],
depth=32,
num_layers_before_predictor=1,
box_code_size=4))
box_predictions = conv_box_predictor(
[image_features1, image_features2, image_features3])
box_encodings = tf.concat(
......@@ -435,20 +439,25 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def test_predictions_multiple_feature_maps_share_weights_separate_batchnorm(
self):
tf.keras.backend.clear_session()
num_classes_without_background = 6
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4))
variables = []
def graph_fn(image_features1, image_features2):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4))
box_predictions = conv_box_predictor([image_features1, image_features2])
variables.extend(list(conv_box_predictor.variables))
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
class_predictions_with_background = tf.concat(
......@@ -456,25 +465,41 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
axis=1)
return (box_encodings, class_predictions_with_background)
with self.test_session(graph=tf.Graph()):
graph_fn(tf.random_uniform([4, 32, 32, 3], dtype=tf.float32),
tf.random_uniform([4, 16, 16, 3], dtype=tf.float32))
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
self.execute(graph_fn, [
np.random.rand(4, 32, 32, 3).astype(np.float32),
np.random.rand(4, 16, 16, 3).astype(np.float32)
])
actual_variable_set = set([var.name.split(':')[0] for var in variables])
expected_variable_set = set([
# Box prediction tower
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_0/kernel'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_0/BatchNorm/feature_0/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_0/BatchNorm/feature_0/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_0/BatchNorm/feature_0/moving_variance'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_0/BatchNorm/feature_1/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_0/BatchNorm/feature_1/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_0/BatchNorm/feature_1/moving_variance'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_1/kernel'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_1/BatchNorm/feature_0/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_1/BatchNorm/feature_0/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_1/BatchNorm/feature_0/moving_variance'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_1/BatchNorm/feature_1/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_1/BatchNorm/feature_1/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'BoxPredictionTower/conv2d_1/BatchNorm/feature_1/moving_variance'),
# Box prediction head
('WeightSharedConvolutionalBoxPredictor/'
'WeightSharedConvolutionalBoxHead/BoxPredictor/kernel'),
......@@ -485,14 +510,30 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
'ClassPredictionTower/conv2d_0/kernel'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_0/BatchNorm/feature_0/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_0/BatchNorm/feature_0/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_0/BatchNorm/feature_0/moving_variance'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_0/BatchNorm/feature_1/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_0/BatchNorm/feature_1/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_0/BatchNorm/feature_1/moving_variance'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_1/kernel'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_1/BatchNorm/feature_0/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_1/BatchNorm/feature_0/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_1/BatchNorm/feature_0/moving_variance'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_1/BatchNorm/feature_1/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_1/BatchNorm/feature_1/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'ClassPredictionTower/conv2d_1/BatchNorm/feature_1/moving_variance'),
# Class prediction head
('WeightSharedConvolutionalBoxPredictor/'
'WeightSharedConvolutionalClassHead/ClassPredictor/kernel'),
......@@ -502,21 +543,26 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def test_predictions_multiple_feature_maps_share_weights_without_batchnorm(
self):
tf.keras.backend.clear_session()
num_classes_without_background = 6
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4,
apply_batch_norm=False))
variables = []
def graph_fn(image_features1, image_features2):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4,
apply_batch_norm=False))
box_predictions = conv_box_predictor([image_features1, image_features2])
variables.extend(list(conv_box_predictor.variables))
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
class_predictions_with_background = tf.concat(
......@@ -524,11 +570,11 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
axis=1)
return (box_encodings, class_predictions_with_background)
with self.test_session(graph=tf.Graph()):
graph_fn(tf.random_uniform([4, 32, 32, 3], dtype=tf.float32),
tf.random_uniform([4, 16, 16, 3], dtype=tf.float32))
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
self.execute(graph_fn, [
np.random.rand(4, 32, 32, 3).astype(np.float32),
np.random.rand(4, 16, 16, 3).astype(np.float32)
])
actual_variable_set = set([var.name.split(':')[0] for var in variables])
expected_variable_set = set([
# Box prediction tower
('WeightSharedConvolutionalBoxPredictor/'
......@@ -562,23 +608,27 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def test_predictions_multiple_feature_maps_share_weights_with_depthwise(
self):
tf.keras.backend.clear_session()
num_classes_without_background = 6
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(add_batch_norm=False),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4,
apply_batch_norm=False,
use_depthwise=True))
variables = []
def graph_fn(image_features1, image_features2):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(
add_batch_norm=False),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4,
apply_batch_norm=False,
use_depthwise=True))
box_predictions = conv_box_predictor([image_features1, image_features2])
variables.extend(list(conv_box_predictor.variables))
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
class_predictions_with_background = tf.concat(
......@@ -586,11 +636,11 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
axis=1)
return (box_encodings, class_predictions_with_background)
with self.test_session(graph=tf.Graph()):
graph_fn(tf.random_uniform([4, 32, 32, 3], dtype=tf.float32),
tf.random_uniform([4, 16, 16, 3], dtype=tf.float32))
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
self.execute(graph_fn, [
np.random.rand(4, 32, 32, 3).astype(np.float32),
np.random.rand(4, 16, 16, 3).astype(np.float32)
])
actual_variable_set = set([var.name.split(':')[0] for var in variables])
expected_variable_set = set([
# Box prediction tower
('WeightSharedConvolutionalBoxPredictor/'
......@@ -635,23 +685,27 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
self.assertEqual(expected_variable_set, actual_variable_set)
def test_no_batchnorm_params_when_batchnorm_is_not_configured(self):
tf.keras.backend.clear_session()
num_classes_without_background = 6
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(add_batch_norm=False),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4,
apply_batch_norm=False))
variables = []
def graph_fn(image_features1, image_features2):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(
add_batch_norm=False),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4,
apply_batch_norm=False))
box_predictions = conv_box_predictor(
[image_features1, image_features2])
variables.extend(list(conv_box_predictor.variables))
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
class_predictions_with_background = tf.concat(
......@@ -659,11 +713,11 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
axis=1)
return (box_encodings, class_predictions_with_background)
with self.test_session(graph=tf.Graph()):
graph_fn(tf.random_uniform([4, 32, 32, 3], dtype=tf.float32),
tf.random_uniform([4, 16, 16, 3], dtype=tf.float32))
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
self.execute(graph_fn, [
np.random.rand(4, 32, 32, 3).astype(np.float32),
np.random.rand(4, 16, 16, 3).astype(np.float32)
])
actual_variable_set = set([var.name.split(':')[0] for var in variables])
expected_variable_set = set([
# Box prediction tower
('WeightSharedConvolutionalBoxPredictor/'
......@@ -697,22 +751,27 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def test_predictions_share_weights_share_tower_separate_batchnorm(
self):
tf.keras.backend.clear_session()
num_classes_without_background = 6
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4,
share_prediction_tower=True))
variables = []
def graph_fn(image_features1, image_features2):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4,
share_prediction_tower=True))
box_predictions = conv_box_predictor(
[image_features1, image_features2])
variables.extend(list(conv_box_predictor.variables))
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
class_predictions_with_background = tf.concat(
......@@ -720,11 +779,11 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
axis=1)
return (box_encodings, class_predictions_with_background)
with self.test_session(graph=tf.Graph()):
graph_fn(tf.random_uniform([4, 32, 32, 3], dtype=tf.float32),
tf.random_uniform([4, 16, 16, 3], dtype=tf.float32))
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
self.execute(graph_fn, [
np.random.rand(4, 32, 32, 3).astype(np.float32),
np.random.rand(4, 16, 16, 3).astype(np.float32)
])
actual_variable_set = set([var.name.split(':')[0] for var in variables])
expected_variable_set = set([
# Shared prediction tower
('WeightSharedConvolutionalBoxPredictor/'
......@@ -733,12 +792,28 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
'PredictionTower/conv2d_0/BatchNorm/feature_0/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_0/BatchNorm/feature_1/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_0/BatchNorm/feature_0/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_0/BatchNorm/feature_1/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_0/BatchNorm/feature_0/moving_variance'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_0/BatchNorm/feature_1/moving_variance'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_1/kernel'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_1/BatchNorm/feature_0/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_1/BatchNorm/feature_1/beta'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_1/BatchNorm/feature_0/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_1/BatchNorm/feature_1/moving_mean'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_1/BatchNorm/feature_0/moving_variance'),
('WeightSharedConvolutionalBoxPredictor/'
'PredictionTower/conv2d_1/BatchNorm/feature_1/moving_variance'),
# Box prediction head
('WeightSharedConvolutionalBoxPredictor/'
'WeightSharedConvolutionalBoxHead/BoxPredictor/kernel'),
......@@ -753,24 +828,28 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
def test_predictions_share_weights_share_tower_without_batchnorm(
self):
tf.keras.backend.clear_session()
num_classes_without_background = 6
conv_box_predictor = (
box_predictor_builder
.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(add_batch_norm=False),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4,
share_prediction_tower=True,
apply_batch_norm=False))
variables = []
def graph_fn(image_features1, image_features2):
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(
add_batch_norm=False),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5, 5],
depth=32,
num_layers_before_predictor=2,
box_code_size=4,
share_prediction_tower=True,
apply_batch_norm=False))
box_predictions = conv_box_predictor(
[image_features1, image_features2])
variables.extend(list(conv_box_predictor.variables))
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
class_predictions_with_background = tf.concat(
......@@ -778,11 +857,11 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
axis=1)
return (box_encodings, class_predictions_with_background)
with self.test_session(graph=tf.Graph()):
graph_fn(tf.random_uniform([4, 32, 32, 3], dtype=tf.float32),
tf.random_uniform([4, 16, 16, 3], dtype=tf.float32))
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
self.execute(graph_fn, [
np.random.rand(4, 32, 32, 3).astype(np.float32),
np.random.rand(4, 16, 16, 3).astype(np.float32)
])
actual_variable_set = set([var.name.split(':')[0] for var in variables])
expected_variable_set = set([
# Shared prediction tower
('WeightSharedConvolutionalBoxPredictor/'
......@@ -806,40 +885,6 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
self.assertEqual(expected_variable_set, actual_variable_set)
def test_get_predictions_with_feature_maps_of_dynamic_shape(
self):
image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64])
conv_box_predictor = (
box_predictor_builder.build_weight_shared_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
depth=32,
num_layers_before_predictor=1,
box_code_size=4))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(box_predictions[box_predictor.BOX_ENCODINGS],
axis=1)
objectness_predictions = tf.concat(box_predictions[
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1)
init_op = tf.global_variables_initializer()
resolution = 32
expected_num_anchors = resolution*resolution*5
with self.test_session() as sess:
sess.run(init_op)
(box_encodings_shape,
objectness_predictions_shape) = sess.run(
[tf.shape(box_encodings), tf.shape(objectness_predictions)],
feed_dict={image_features:
np.random.rand(4, resolution, resolution, 64)})
self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 4])
self.assertAllEqual(objectness_predictions_shape,
[4, expected_num_anchors, 1])
def test_other_heads_predictions(self):
box_code_size = 4
num_classes_without_background = 3
......@@ -847,37 +892,36 @@ class WeightSharedConvolutionalKerasBoxPredictorTest(test_case.TestCase):
mask_height = 5
mask_width = 5
num_predictions_per_location = 5
box_prediction_head = keras_box_head.WeightSharedConvolutionalBoxHead(
box_code_size=box_code_size,
conv_hyperparams=self._build_conv_hyperparams(),
num_predictions_per_location=num_predictions_per_location)
class_prediction_head = keras_class_head.WeightSharedConvolutionalClassHead(
num_class_slots=num_classes_without_background + 1,
conv_hyperparams=self._build_conv_hyperparams(),
num_predictions_per_location=num_predictions_per_location)
other_heads = {
other_head_name:
keras_mask_head.WeightSharedConvolutionalMaskHead(
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
num_predictions_per_location=num_predictions_per_location,
mask_height=mask_height,
mask_width=mask_width)
}
conv_box_predictor = box_predictor.WeightSharedConvolutionalBoxPredictor(
is_training=False,
num_classes=num_classes_without_background,
box_prediction_head=box_prediction_head,
class_prediction_head=class_prediction_head,
other_heads=other_heads,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
depth=32,
num_layers_before_predictor=2)
def graph_fn(image_features):
box_prediction_head = keras_box_head.WeightSharedConvolutionalBoxHead(
box_code_size=box_code_size,
conv_hyperparams=self._build_conv_hyperparams(),
num_predictions_per_location=num_predictions_per_location)
class_prediction_head = keras_class_head.WeightSharedConvolutionalClassHead(
num_class_slots=num_classes_without_background + 1,
conv_hyperparams=self._build_conv_hyperparams(),
num_predictions_per_location=num_predictions_per_location)
other_heads = {
other_head_name:
keras_mask_head.WeightSharedConvolutionalMaskHead(
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
num_predictions_per_location=num_predictions_per_location,
mask_height=mask_height,
mask_width=mask_width)
}
conv_box_predictor = box_predictor.WeightSharedConvolutionalBoxPredictor(
is_training=False,
num_classes=num_classes_without_background,
box_prediction_head=box_prediction_head,
class_prediction_head=class_prediction_head,
other_heads=other_heads,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
depth=32,
num_layers_before_predictor=2)
box_predictions = conv_box_predictor([image_features])
for key, value in box_predictions.items():
box_predictions[key] = tf.concat(value, axis=1)
......
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.heads.box_head."""
import unittest
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
......@@ -21,8 +22,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors.heads import box_head
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class MaskRCNNBoxHeadTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(self,
......@@ -59,6 +62,7 @@ class MaskRCNNBoxHeadTest(test_case.TestCase):
self.assertAllEqual([64, 1, 20, 4], prediction.get_shape().as_list())
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class ConvolutionalBoxPredictorTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(
......@@ -92,6 +96,7 @@ class ConvolutionalBoxPredictorTest(test_case.TestCase):
self.assertAllEqual([64, 323, 1, 4], box_encodings.get_shape().as_list())
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class WeightSharedConvolutionalBoxPredictorTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(
......
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.heads.class_head."""
import unittest
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
......@@ -21,8 +22,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors.heads import class_head
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class MaskRCNNClassHeadTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(self,
......@@ -81,6 +84,7 @@ class MaskRCNNClassHeadTest(test_case.TestCase):
self.assertSetEqual(expected_var_names, actual_variable_set)
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class ConvolutionalClassPredictorTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(
......@@ -140,6 +144,7 @@ class ConvolutionalClassPredictorTest(test_case.TestCase):
self.assertSetEqual(expected_var_names, actual_variable_set)
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class WeightSharedConvolutionalClassPredictorTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(
......
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.heads.box_head."""
import unittest
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
......@@ -21,8 +22,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors.heads import keras_box_head
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class ConvolutionalKerasBoxHeadTest(test_case.TestCase):
def _build_conv_hyperparams(self):
......@@ -51,10 +54,13 @@ class ConvolutionalKerasBoxHeadTest(test_case.TestCase):
freeze_batchnorm=False,
num_predictions_per_location=1,
use_depthwise=False)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
box_encodings = box_prediction_head(image_feature)
self.assertAllEqual([64, 323, 1, 4], box_encodings.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
box_encodings = box_prediction_head(image_feature)
return box_encodings
box_encodings = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 1, 4], box_encodings.shape)
def test_prediction_size_depthwise_true(self):
conv_hyperparams = self._build_conv_hyperparams()
......@@ -66,12 +72,16 @@ class ConvolutionalKerasBoxHeadTest(test_case.TestCase):
freeze_batchnorm=False,
num_predictions_per_location=1,
use_depthwise=True)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
box_encodings = box_prediction_head(image_feature)
self.assertAllEqual([64, 323, 1, 4], box_encodings.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
box_encodings = box_prediction_head(image_feature)
return box_encodings
box_encodings = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 1, 4], box_encodings.shape)
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class MaskRCNNKerasBoxHeadTest(test_case.TestCase):
def _build_fc_hyperparams(
......@@ -102,12 +112,16 @@ class MaskRCNNKerasBoxHeadTest(test_case.TestCase):
dropout_keep_prob=0.5,
box_code_size=4,
share_box_across_classes=False)
roi_pooled_features = tf.random_uniform(
[64, 7, 7, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
prediction = box_prediction_head(roi_pooled_features)
self.assertAllEqual([64, 1, 20, 4], prediction.get_shape().as_list())
def graph_fn():
roi_pooled_features = tf.random_uniform(
[64, 7, 7, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
prediction = box_prediction_head(roi_pooled_features)
return prediction
prediction = self.execute(graph_fn, [])
self.assertAllEqual([64, 1, 20, 4], prediction.shape)
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class WeightSharedConvolutionalKerasBoxHead(test_case.TestCase):
def _build_conv_hyperparams(self):
......@@ -133,10 +147,13 @@ class WeightSharedConvolutionalKerasBoxHead(test_case.TestCase):
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=False)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
box_encodings = box_prediction_head(image_feature)
self.assertAllEqual([64, 323, 4], box_encodings.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
box_encodings = box_prediction_head(image_feature)
return box_encodings
box_encodings = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 4], box_encodings.shape)
def test_prediction_size_depthwise_true(self):
conv_hyperparams = self._build_conv_hyperparams()
......@@ -145,40 +162,38 @@ class WeightSharedConvolutionalKerasBoxHead(test_case.TestCase):
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=True)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
box_encodings = box_prediction_head(image_feature)
self.assertAllEqual([64, 323, 4], box_encodings.get_shape().as_list())
def test_variable_count_depth_wise_true(self):
g = tf.Graph()
with g.as_default():
conv_hyperparams = self._build_conv_hyperparams()
box_prediction_head = keras_box_head.WeightSharedConvolutionalBoxHead(
box_code_size=4,
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=True)
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
_ = box_prediction_head(image_feature)
variables = g.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.assertEqual(len(variables), 3)
box_encodings = box_prediction_head(image_feature)
return box_encodings
box_encodings = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 4], box_encodings.shape)
def test_variable_count_depth_wise_true(self):
conv_hyperparams = self._build_conv_hyperparams()
box_prediction_head = keras_box_head.WeightSharedConvolutionalBoxHead(
box_code_size=4,
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=True)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
box_prediction_head(image_feature)
self.assertEqual(len(box_prediction_head.variables), 3)
def test_variable_count_depth_wise_False(self):
g = tf.Graph()
with g.as_default():
conv_hyperparams = self._build_conv_hyperparams()
box_prediction_head = keras_box_head.WeightSharedConvolutionalBoxHead(
box_code_size=4,
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=False)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
_ = box_prediction_head(image_feature)
variables = g.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.assertEqual(len(variables), 2)
conv_hyperparams = self._build_conv_hyperparams()
box_prediction_head = keras_box_head.WeightSharedConvolutionalBoxHead(
box_code_size=4,
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=False)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
box_prediction_head(image_feature)
self.assertEqual(len(box_prediction_head.variables), 2)
if __name__ == '__main__':
tf.test.main()
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.heads.class_head."""
import unittest
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
......@@ -21,8 +22,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors.heads import keras_class_head
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class ConvolutionalKerasClassPredictorTest(test_case.TestCase):
def _build_conv_hyperparams(self):
......@@ -53,11 +56,13 @@ class ConvolutionalKerasClassPredictorTest(test_case.TestCase):
freeze_batchnorm=False,
num_predictions_per_location=1,
use_depthwise=False)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
class_predictions = class_prediction_head(image_feature,)
self.assertAllEqual([64, 323, 20],
class_predictions.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
class_predictions = class_prediction_head(image_feature,)
return class_predictions
class_predictions = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 20], class_predictions.shape)
def test_prediction_size_depthwise_true(self):
conv_hyperparams = self._build_conv_hyperparams()
......@@ -71,13 +76,16 @@ class ConvolutionalKerasClassPredictorTest(test_case.TestCase):
freeze_batchnorm=False,
num_predictions_per_location=1,
use_depthwise=True)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
class_predictions = class_prediction_head(image_feature,)
self.assertAllEqual([64, 323, 20],
class_predictions.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
class_predictions = class_prediction_head(image_feature,)
return class_predictions
class_predictions = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 20], class_predictions.shape)
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class MaskRCNNClassHeadTest(test_case.TestCase):
def _build_fc_hyperparams(self,
......@@ -106,12 +114,16 @@ class MaskRCNNClassHeadTest(test_case.TestCase):
freeze_batchnorm=False,
use_dropout=True,
dropout_keep_prob=0.5)
roi_pooled_features = tf.random_uniform(
[64, 7, 7, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
prediction = class_prediction_head(roi_pooled_features)
self.assertAllEqual([64, 1, 20], prediction.get_shape().as_list())
def graph_fn():
roi_pooled_features = tf.random_uniform(
[64, 7, 7, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
prediction = class_prediction_head(roi_pooled_features)
return prediction
prediction = self.execute(graph_fn, [])
self.assertAllEqual([64, 1, 20], prediction.shape)
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class WeightSharedConvolutionalKerasClassPredictorTest(test_case.TestCase):
def _build_conv_hyperparams(self):
......@@ -137,10 +149,13 @@ class WeightSharedConvolutionalKerasClassPredictorTest(test_case.TestCase):
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=False)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
class_predictions = class_prediction_head(image_feature)
self.assertAllEqual([64, 323, 20], class_predictions.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
class_predictions = class_prediction_head(image_feature)
return class_predictions
class_predictions = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 20], class_predictions.shape)
def test_prediction_size_depthwise_true(self):
conv_hyperparams = self._build_conv_hyperparams()
......@@ -149,42 +164,39 @@ class WeightSharedConvolutionalKerasClassPredictorTest(test_case.TestCase):
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=True)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
class_predictions = class_prediction_head(image_feature)
self.assertAllEqual([64, 323, 20], class_predictions.get_shape().as_list())
def test_variable_count_depth_wise_true(self):
g = tf.Graph()
with g.as_default():
conv_hyperparams = self._build_conv_hyperparams()
class_prediction_head = (
keras_class_head.WeightSharedConvolutionalClassHead(
num_class_slots=20,
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=True))
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
_ = class_prediction_head(image_feature)
variables = g.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.assertEqual(len(variables), 3)
class_predictions = class_prediction_head(image_feature)
return class_predictions
class_predictions = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 20], class_predictions.shape)
def test_variable_count_depth_wise_true(self):
conv_hyperparams = self._build_conv_hyperparams()
class_prediction_head = (
keras_class_head.WeightSharedConvolutionalClassHead(
num_class_slots=20,
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=True))
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
class_prediction_head(image_feature)
self.assertEqual(len(class_prediction_head.variables), 3)
def test_variable_count_depth_wise_False(self):
g = tf.Graph()
with g.as_default():
conv_hyperparams = self._build_conv_hyperparams()
class_prediction_head = (
keras_class_head.WeightSharedConvolutionalClassHead(
num_class_slots=20,
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=False))
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
_ = class_prediction_head(image_feature)
variables = g.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.assertEqual(len(variables), 2)
conv_hyperparams = self._build_conv_hyperparams()
class_prediction_head = (
keras_class_head.WeightSharedConvolutionalClassHead(
num_class_slots=20,
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=1,
use_depthwise=False))
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
class_prediction_head(image_feature)
self.assertEqual(len(class_prediction_head.variables), 2)
if __name__ == '__main__':
......
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.heads.mask_head."""
import unittest
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
......@@ -21,8 +22,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors.heads import keras_mask_head
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class ConvolutionalMaskPredictorTest(test_case.TestCase):
def _build_conv_hyperparams(self):
......@@ -55,11 +58,13 @@ class ConvolutionalMaskPredictorTest(test_case.TestCase):
use_depthwise=False,
mask_height=7,
mask_width=7)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
self.assertAllEqual([64, 323, 20, 7, 7],
mask_predictions.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
return mask_predictions
mask_predictions = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 20, 7, 7], mask_predictions.shape)
def test_prediction_size_use_depthwise_true(self):
conv_hyperparams = self._build_conv_hyperparams()
......@@ -75,11 +80,13 @@ class ConvolutionalMaskPredictorTest(test_case.TestCase):
use_depthwise=True,
mask_height=7,
mask_width=7)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
self.assertAllEqual([64, 323, 20, 7, 7],
mask_predictions.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
return mask_predictions
mask_predictions = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 20, 7, 7], mask_predictions.shape)
def test_class_agnostic_prediction_size_use_depthwise_false(self):
conv_hyperparams = self._build_conv_hyperparams()
......@@ -96,11 +103,13 @@ class ConvolutionalMaskPredictorTest(test_case.TestCase):
mask_height=7,
mask_width=7,
masks_are_class_agnostic=True)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
self.assertAllEqual([64, 323, 1, 7, 7],
mask_predictions.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
return mask_predictions
mask_predictions = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 1, 7, 7], mask_predictions.shape)
def test_class_agnostic_prediction_size_use_depthwise_true(self):
conv_hyperparams = self._build_conv_hyperparams()
......@@ -117,13 +126,16 @@ class ConvolutionalMaskPredictorTest(test_case.TestCase):
mask_height=7,
mask_width=7,
masks_are_class_agnostic=True)
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
self.assertAllEqual([64, 323, 1, 7, 7],
mask_predictions.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
return mask_predictions
mask_predictions = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 1, 7, 7], mask_predictions.shape)
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class MaskRCNNMaskHeadTest(test_case.TestCase):
def _build_conv_hyperparams(self,
......@@ -155,10 +167,13 @@ class MaskRCNNMaskHeadTest(test_case.TestCase):
mask_prediction_num_conv_layers=2,
mask_prediction_conv_depth=256,
masks_are_class_agnostic=False)
roi_pooled_features = tf.random_uniform(
[64, 7, 7, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
prediction = mask_prediction_head(roi_pooled_features)
self.assertAllEqual([64, 1, 20, 14, 14], prediction.get_shape().as_list())
def graph_fn():
roi_pooled_features = tf.random_uniform(
[64, 7, 7, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
prediction = mask_prediction_head(roi_pooled_features)
return prediction
prediction = self.execute(graph_fn, [])
self.assertAllEqual([64, 1, 20, 14, 14], prediction.shape)
def test_prediction_size_with_convolve_then_upsample(self):
mask_prediction_head = keras_mask_head.MaskRCNNMaskHead(
......@@ -172,12 +187,16 @@ class MaskRCNNMaskHeadTest(test_case.TestCase):
mask_prediction_conv_depth=256,
masks_are_class_agnostic=True,
convolve_then_upsample=True)
roi_pooled_features = tf.random_uniform(
[64, 14, 14, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
prediction = mask_prediction_head(roi_pooled_features)
self.assertAllEqual([64, 1, 1, 28, 28], prediction.get_shape().as_list())
def graph_fn():
roi_pooled_features = tf.random_uniform(
[64, 14, 14, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
prediction = mask_prediction_head(roi_pooled_features)
return prediction
prediction = self.execute(graph_fn, [])
self.assertAllEqual([64, 1, 1, 28, 28], prediction.shape)
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class WeightSharedConvolutionalMaskPredictorTest(test_case.TestCase):
def _build_conv_hyperparams(self):
......@@ -204,11 +223,13 @@ class WeightSharedConvolutionalMaskPredictorTest(test_case.TestCase):
conv_hyperparams=self._build_conv_hyperparams(),
mask_height=7,
mask_width=7))
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
self.assertAllEqual([64, 323, 20, 7, 7],
mask_predictions.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
return mask_predictions
mask_predictions = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 20, 7, 7], mask_predictions.shape)
def test_class_agnostic_prediction_size(self):
mask_prediction_head = (
......@@ -219,11 +240,13 @@ class WeightSharedConvolutionalMaskPredictorTest(test_case.TestCase):
mask_height=7,
mask_width=7,
masks_are_class_agnostic=True))
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
self.assertAllEqual([64, 323, 1, 7, 7],
mask_predictions.get_shape().as_list())
def graph_fn():
image_feature = tf.random_uniform(
[64, 17, 19, 1024], minval=-10.0, maxval=10.0, dtype=tf.float32)
mask_predictions = mask_prediction_head(image_feature)
return mask_predictions
mask_predictions = self.execute(graph_fn, [])
self.assertAllEqual([64, 323, 1, 7, 7], mask_predictions.shape)
if __name__ == '__main__':
tf.test.main()
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.heads.keypoint_head."""
import unittest
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
......@@ -21,8 +22,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors.heads import keypoint_head
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class MaskRCNNKeypointHeadTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(self,
......
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.heads.mask_head."""
import unittest
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
......@@ -21,8 +22,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors.heads import mask_head
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class MaskRCNNMaskHeadTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(self,
......@@ -75,6 +78,7 @@ class MaskRCNNMaskHeadTest(test_case.TestCase):
self.assertAllEqual([64, 1, 1, 28, 28], prediction.get_shape().as_list())
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class ConvolutionalMaskPredictorTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(
......@@ -131,6 +135,7 @@ class ConvolutionalMaskPredictorTest(test_case.TestCase):
mask_predictions.get_shape().as_list())
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class WeightSharedConvolutionalMaskPredictorTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(
......
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.mask_rcnn_box_predictor."""
import unittest
import numpy as np
import tensorflow.compat.v1 as tf
......@@ -23,8 +24,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors import mask_rcnn_box_predictor as box_predictor
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class MaskRCNNBoxPredictorTest(test_case.TestCase):
def _build_arg_scope_with_hyperparams(self,
......
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.mask_rcnn_box_predictor."""
import unittest
import numpy as np
import tensorflow.compat.v1 as tf
......@@ -23,8 +24,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors import mask_rcnn_keras_box_predictor as box_predictor
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class MaskRCNNKerasBoxPredictorTest(test_case.TestCase):
def _build_hyperparams(self,
......@@ -46,17 +49,17 @@ class MaskRCNNKerasBoxPredictorTest(test_case.TestCase):
return hyperparams_builder.KerasLayerHyperparams(hyperparams)
def test_get_boxes_with_five_classes(self):
mask_box_predictor = (
box_predictor_builder.build_mask_rcnn_keras_box_predictor(
is_training=False,
num_classes=5,
fc_hyperparams=self._build_hyperparams(),
freeze_batchnorm=False,
use_dropout=False,
dropout_keep_prob=0.5,
box_code_size=4,
))
def graph_fn(image_features):
mask_box_predictor = (
box_predictor_builder.build_mask_rcnn_keras_box_predictor(
is_training=False,
num_classes=5,
fc_hyperparams=self._build_hyperparams(),
freeze_batchnorm=False,
use_dropout=False,
dropout_keep_prob=0.5,
box_code_size=4,
))
box_predictions = mask_box_predictor(
[image_features],
prediction_stage=2)
......@@ -70,18 +73,19 @@ class MaskRCNNKerasBoxPredictorTest(test_case.TestCase):
self.assertAllEqual(class_predictions_with_background.shape, [2, 1, 6])
def test_get_boxes_with_five_classes_share_box_across_classes(self):
mask_box_predictor = (
box_predictor_builder.build_mask_rcnn_keras_box_predictor(
is_training=False,
num_classes=5,
fc_hyperparams=self._build_hyperparams(),
freeze_batchnorm=False,
use_dropout=False,
dropout_keep_prob=0.5,
box_code_size=4,
share_box_across_classes=True
))
def graph_fn(image_features):
mask_box_predictor = (
box_predictor_builder.build_mask_rcnn_keras_box_predictor(
is_training=False,
num_classes=5,
fc_hyperparams=self._build_hyperparams(),
freeze_batchnorm=False,
use_dropout=False,
dropout_keep_prob=0.5,
box_code_size=4,
share_box_across_classes=True
))
box_predictions = mask_box_predictor(
[image_features],
prediction_stage=2)
......@@ -95,19 +99,19 @@ class MaskRCNNKerasBoxPredictorTest(test_case.TestCase):
self.assertAllEqual(class_predictions_with_background.shape, [2, 1, 6])
def test_get_instance_masks(self):
mask_box_predictor = (
box_predictor_builder.build_mask_rcnn_keras_box_predictor(
is_training=False,
num_classes=5,
fc_hyperparams=self._build_hyperparams(),
freeze_batchnorm=False,
use_dropout=False,
dropout_keep_prob=0.5,
box_code_size=4,
conv_hyperparams=self._build_hyperparams(
op_type=hyperparams_pb2.Hyperparams.CONV),
predict_instance_masks=True))
def graph_fn(image_features):
mask_box_predictor = (
box_predictor_builder.build_mask_rcnn_keras_box_predictor(
is_training=False,
num_classes=5,
fc_hyperparams=self._build_hyperparams(),
freeze_batchnorm=False,
use_dropout=False,
dropout_keep_prob=0.5,
box_code_size=4,
conv_hyperparams=self._build_hyperparams(
op_type=hyperparams_pb2.Hyperparams.CONV),
predict_instance_masks=True))
box_predictions = mask_box_predictor(
[image_features],
prediction_stage=3)
......
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.rfcn_box_predictor."""
import unittest
import numpy as np
import tensorflow.compat.v1 as tf
......@@ -22,8 +23,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors import rfcn_box_predictor as box_predictor
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class RfcnBoxPredictorTest(test_case.TestCase):
def _build_arg_scope_with_conv_hyperparams(self):
......
......@@ -14,6 +14,7 @@
# ==============================================================================
"""Tests for object_detection.predictors.rfcn_box_predictor."""
import unittest
import numpy as np
import tensorflow.compat.v1 as tf
......@@ -22,8 +23,10 @@ from object_detection.builders import hyperparams_builder
from object_detection.predictors import rfcn_keras_box_predictor as box_predictor
from object_detection.protos import hyperparams_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class RfcnKerasBoxPredictorTest(test_case.TestCase):
def _build_conv_hyperparams(self):
......@@ -42,18 +45,17 @@ class RfcnKerasBoxPredictorTest(test_case.TestCase):
return hyperparams_builder.KerasLayerHyperparams(conv_hyperparams)
def test_get_correct_box_encoding_and_class_prediction_shapes(self):
rfcn_box_predictor = box_predictor.RfcnKerasBoxPredictor(
is_training=False,
num_classes=2,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
num_spatial_bins=[3, 3],
depth=4,
crop_size=[12, 12],
box_code_size=4)
def graph_fn(image_features, proposal_boxes):
rfcn_box_predictor = box_predictor.RfcnKerasBoxPredictor(
is_training=False,
num_classes=2,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
num_spatial_bins=[3, 3],
depth=4,
crop_size=[12, 12],
box_code_size=4
)
box_predictions = rfcn_box_predictor(
[image_features],
proposal_boxes=proposal_boxes)
......
syntax = "proto2";
package object_detection.protos;
import "object_detection/protos/image_resizer.proto";
import "object_detection/protos/losses.proto";
// Configuration for the CenterNet meta architecture from the "Objects as
// Points" paper [1]
// [1]: https://arxiv.org/abs/1904.07850
message CenterNet {
// Number of classes to predict.
optional int32 num_classes = 1;
// Feature extractor config.
optional CenterNetFeatureExtractor feature_extractor = 2;
// Image resizer for preprocessing the input image.
optional ImageResizer image_resizer = 3;
// Parameters which are related to object detection task.
message ObjectDetection {
// The original fields are moved to ObjectCenterParams or deleted.
reserved 2, 5, 6, 7;
// Weight of the task loss. The total loss of the model will be the
// summation of task losses weighted by the weights.
optional float task_loss_weight = 1 [default = 1.0];
// Weight for the offset localization loss.
optional float offset_loss_weight = 3 [default = 1.0];
// Weight for the height/width localization loss.
optional float scale_loss_weight = 4 [default = 0.1];
// Localization loss configuration for object scale and offset losses.
optional LocalizationLoss localization_loss = 8;
}
optional ObjectDetection object_detection_task = 4;
// Parameters related to object center prediction. This is required for both
// object detection and keypoint estimation tasks.
message ObjectCenterParams {
// Weight for the object center loss.
optional float object_center_loss_weight = 1 [default = 1.0];
// Classification loss configuration for object center loss.
optional ClassificationLoss classification_loss = 2;
// The initial bias value of the convlution kernel of the class heatmap
// prediction head. -2.19 corresponds to predicting foreground with
// a probability of 0.1. See "Focal Loss for Dense Object Detection"
// at https://arxiv.org/abs/1708.02002.
optional float heatmap_bias_init = 3 [default = -2.19];
// The minimum IOU overlap boxes need to have to not be penalized.
optional float min_box_overlap_iou = 4 [default = 0.7];
// Maximum number of boxes to predict.
optional int32 max_box_predictions = 5 [default = 100];
// If set, loss is only computed for the labeled classes.
optional bool use_labeled_classes = 6 [default = false];
}
optional ObjectCenterParams object_center_params = 5;
// Path of the file that conatins the label map along with the keypoint
// information, including the keypoint indices, corresponding labels, and the
// corresponding class. The file should be the same one as used in the input
// pipeline. Note that a plain text of StringIntLabelMap proto is expected in
// this file.
// It is required only if the keypoint estimation task is specified.
optional string keypoint_label_map_path = 6;
// Parameters which are related to keypoint estimation task.
message KeypointEstimation {
// Name of the task, e.g. "human pose". Note that the task name should be
// unique to each keypoint task.
optional string task_name = 1;
// Weight of the task loss. The total loss of the model will be their
// summation of task losses weighted by the weights.
optional float task_loss_weight = 2 [default = 1.0];
// Loss configuration for keypoint heatmap, offset, regression losses. Note
// that the localization loss is used for offset/regression losses and
// classification loss is used for heatmap loss.
optional Loss loss = 3;
// The name of the class that contains the keypoints for this task. This is
// used to retrieve the corresponding keypoint indices from the label map.
// Note that this corresponds to the "name" field, not "display_name".
optional string keypoint_class_name = 4;
// The standard deviation of the Gaussian kernel used to generate the
// keypoint heatmap. The unit is the pixel in the output image. It is to
// provide the flexibility of using different sizes of Gaussian kernel for
// each keypoint class. Note that if provided, the keypoint standard
// deviations will be overridden by the specified values here, otherwise,
// the default value 5.0 will be used.
// TODO(yuhuic): Update the default value once we found the best value.
map<string, float> keypoint_label_to_std = 5;
// Loss weights corresponding to different heads.
optional float keypoint_regression_loss_weight = 6 [default = 1.0];
optional float keypoint_heatmap_loss_weight = 7 [default = 1.0];
optional float keypoint_offset_loss_weight = 8 [default = 1.0];
// The initial bias value of the convolution kernel of the keypoint heatmap
// prediction head. -2.19 corresponds to predicting foreground with
// a probability of 0.1. See "Focal Loss for Dense Object Detection"
// at https://arxiv.org/abs/1708.02002.
optional float heatmap_bias_init = 9 [default = -2.19];
// The heatmap score threshold for a keypoint to become a valid candidate.
optional float keypoint_candidate_score_threshold = 10 [default = 0.1];
// The maximum number of candidates to retrieve for each keypoint.
optional int32 num_candidates_per_keypoint = 11 [default = 100];
// Max pool kernel size to use to pull off peak score locations in a
// neighborhood (independently for each keypoint types).
optional int32 peak_max_pool_kernel_size = 12 [default = 3];
// The default score to use for regressed keypoints that are not
// successfully snapped to a nearby candidate.
optional float unmatched_keypoint_score = 13 [default = 0.1];
// The multiplier to expand the bounding boxes (either the provided boxes or
// those which tightly cover the regressed keypoints). Note that new
// expanded box for an instance becomes the feasible search window for all
// associated keypoints.
optional float box_scale = 14 [default = 1.2];
// The scale parameter that multiplies the largest dimension of a bounding
// box. The resulting distance becomes a search radius for candidates in the
// vicinity of each regressed keypoint.
optional float candidate_search_scale = 15 [default = 0.3];
// One of ['min_distance', 'score_distance_ratio'] indicating how to select
// the keypoint candidate.
optional string candidate_ranking_mode = 16 [default = "min_distance"];
// The radius (in the unit of output pixel) around heatmap peak to assign
// the offset targets. If set 0, then the offset target will only be
// assigned to the heatmap peak (same behavior as the original paper).
optional int32 offset_peak_radius = 17 [default = 0];
// Indicates whether to assign offsets for each keypoint channel
// separately. If set False, the output offset target has the shape
// [batch_size, out_height, out_width, 2] (same behavior as the original
// paper). If set True, the output offset target has the shape [batch_size,
// out_height, out_width, 2 * num_keypoints] (recommended when the
// offset_peak_radius is not zero).
optional bool per_keypoint_offset = 18 [default = false];
}
repeated KeypointEstimation keypoint_estimation_task = 7;
// Parameters which are related to mask estimation task.
// Note: Currently, CenterNet supports a weak instance segmentation, where
// semantic segmentation masks are estimated, and then cropped based on
// bounding box detections. Therefore, it is possible for the same image
// pixel to be assigned to multiple instances.
message MaskEstimation {
// Weight of the task loss. The total loss of the model will be their
// summation of task losses weighted by the weights.
optional float task_loss_weight = 1 [default = 1.0];
// Classification loss configuration for segmentation loss.
optional ClassificationLoss classification_loss = 2;
// Each instance mask (one per detection) is cropped and resized (bilinear
// resampling) from the predicted segmentation feature map. After
// resampling, the masks are binarized with the provided score threshold.
optional int32 mask_height = 4 [default = 256];
optional int32 mask_width = 5 [default = 256];
optional float score_threshold = 6 [default = 0.5];
// The initial bias value of the convlution kernel of the class heatmap
// prediction head. -2.19 corresponds to predicting foreground with
// a probability of 0.1.
optional float heatmap_bias_init = 3 [default = -2.19];
}
optional MaskEstimation mask_estimation_task = 8;
}
message CenterNetFeatureExtractor {
optional string type = 1;
// Channel means to be subtracted from each image channel. If not specified,
// we use a default value of 0.
repeated float channel_means = 2;
// Channel standard deviations. Each channel will be normalized by dividing
// it by its standard deviation. If not specified, we use a default value
// of 1.
repeated float channel_stds = 3;
// If set, will change channel order to be [blue, green, red]. This can be
// useful to be compatible with some pre-trained feature extractors.
optional bool bgr_ordering = 4 [default = false];
}
......@@ -188,7 +188,7 @@ message Context {
// Next id: 4
// The maximum number of contextual features per-image, used for padding
optional int32 max_num_context_features = 1 [default = 8500];
optional int32 max_num_context_features = 1 [default = 2000];
// The bottleneck feature dimension of the attention block.
optional int32 attention_bottleneck_dimension = 2 [default = 2048];
......
......@@ -2,6 +2,7 @@ syntax = "proto2";
package object_detection.protos;
import "object_detection/protos/center_net.proto";
import "object_detection/protos/faster_rcnn.proto";
import "object_detection/protos/ssd.proto";
......@@ -17,6 +18,7 @@ message DetectionModel {
// value to a function that builds your model.
ExperimentalModel experimental_model = 3;
CenterNet center_net = 4;
}
}
......
# SSDLite with MobileDet-GPU feature extractor.
# Reference: Xiong & Liu et al., https://arxiv.org/abs/2004.14525
# Trained on COCO, initialized from scratch.
#
# 5.07B MulAdds, 13.11M Parameters.
# Latencies are 11.0ms (fp32), 3.2ms (fp16) and 2.3ms (int8) on Jetson Xavier,
# optimized using TensorRT 7.1.
# Achieves 28.7 mAP on COCO14 minival dataset.
# Achieves 27.5 mAP on COCO17 val dataset.
#
# This config is TPU compatible.
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 90
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 320
width: 320
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 3
use_depthwise: true
box_code_size: 4
apply_sigmoid_to_scores: false
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.97,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobiledet_gpu'
min_depth: 16
depth_multiplier: 1.0
use_depthwise: true
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.97,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: false
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.75,
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
delta: 1.0
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
use_static_shapes: true
}
score_converter: SIGMOID
}
}
}
train_config: {
batch_size: 512
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 32
num_steps: 400000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 0.8
total_steps: 400000
warmup_learning_rate: 0.13333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record-?????-of-00100"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
num_examples: 8000
}
eval_input_reader: {
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record-?????-of-00010"
}
}
# Citation and license
The images and metadata in this folder come from the Snapshot Serengeti dataset,
and were accessed via [LILA.science](http://lila.science/datasets/snapshot-serengeti).
The images and species-level labels are described in more detail in the
associated manuscript:
```
Swanson AB, Kosmala M, Lintott CJ, Simpson RJ, Smith A, Packer C (2015)
Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian
species in an African savanna. Scientific Data 2: 150026. (DOI) (bibtex)
```
Please cite this manuscript if you use this dataset.
This data set is released under the
[Community Data License Agreement (permissive variant)](https://cdla.io/permissive-1-0/).
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment