Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
b1025b3b
Commit
b1025b3b
authored
Jun 18, 2020
by
syiming
Browse files
Merge remote-tracking branch 'upstream/master' into fasterrcnn_fpn_keras_feature_extractor
parents
69ce1c45
e9df75ab
Changes
196
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1463 additions
and
56 deletions
+1463
-56
research/object_detection/metrics/calibration_evaluation_tf1_test.py
...ject_detection/metrics/calibration_evaluation_tf1_test.py
+3
-0
research/object_detection/metrics/calibration_metrics_tf1_test.py
.../object_detection/metrics/calibration_metrics_tf1_test.py
+3
-0
research/object_detection/metrics/coco_evaluation.py
research/object_detection/metrics/coco_evaluation.py
+533
-0
research/object_detection/metrics/coco_evaluation_test.py
research/object_detection/metrics/coco_evaluation_test.py
+221
-0
research/object_detection/metrics/coco_tools.py
research/object_detection/metrics/coco_tools.py
+4
-1
research/object_detection/metrics/offline_eval_map_corloc.py
research/object_detection/metrics/offline_eval_map_corloc.py
+2
-2
research/object_detection/model_lib_tf1_test.py
research/object_detection/model_lib_tf1_test.py
+6
-7
research/object_detection/model_lib_tf2_test.py
research/object_detection/model_lib_tf2_test.py
+5
-1
research/object_detection/model_lib_v2.py
research/object_detection/model_lib_v2.py
+11
-7
research/object_detection/model_main_tf2.py
research/object_detection/model_main_tf2.py
+112
-0
research/object_detection/models/center_net_hourglass_feature_extractor.py
...etection/models/center_net_hourglass_feature_extractor.py
+75
-0
research/object_detection/models/center_net_hourglass_feature_extractor_tf2_test.py
...models/center_net_hourglass_feature_extractor_tf2_test.py
+44
-0
research/object_detection/models/center_net_resnet_feature_extractor.py
...t_detection/models/center_net_resnet_feature_extractor.py
+149
-0
research/object_detection/models/center_net_resnet_feature_extractor_tf2_test.py
...on/models/center_net_resnet_feature_extractor_tf2_test.py
+54
-0
research/object_detection/models/center_net_resnet_v1_fpn_feature_extractor.py
...tion/models/center_net_resnet_v1_fpn_feature_extractor.py
+176
-0
research/object_detection/models/center_net_resnet_v1_fpn_feature_extractor_tf2_test.py
...ls/center_net_resnet_v1_fpn_feature_extractor_tf2_test.py
+49
-0
research/object_detection/models/embedded_ssd_mobilenet_v1_feature_extractor_tf1_test.py
...s/embedded_ssd_mobilenet_v1_feature_extractor_tf1_test.py
+3
-0
research/object_detection/models/faster_rcnn_inception_resnet_v2_feature_extractor_tf1_test.py
...er_rcnn_inception_resnet_v2_feature_extractor_tf1_test.py
+3
-1
research/object_detection/models/faster_rcnn_inception_resnet_v2_keras_feature_extractor_tf2_test.py
...n_inception_resnet_v2_keras_feature_extractor_tf2_test.py
+7
-36
research/object_detection/models/faster_rcnn_inception_v2_feature_extractor_tf1_test.py
...ls/faster_rcnn_inception_v2_feature_extractor_tf1_test.py
+3
-1
No files found.
research/object_detection/metrics/calibration_evaluation_test.py
→
research/object_detection/metrics/calibration_evaluation_
tf1_
test.py
View file @
b1025b3b
...
@@ -18,9 +18,11 @@ from __future__ import absolute_import
...
@@ -18,9 +18,11 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
from
object_detection.core
import
standard_fields
from
object_detection.core
import
standard_fields
from
object_detection.metrics
import
calibration_evaluation
from
object_detection.metrics
import
calibration_evaluation
from
object_detection.utils
import
tf_version
def
_get_categories_list
():
def
_get_categories_list
():
...
@@ -36,6 +38,7 @@ def _get_categories_list():
...
@@ -36,6 +38,7 @@ def _get_categories_list():
}]
}]
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Skipping TF1.X only test.'
)
class
CalibrationDetectionEvaluationTest
(
tf
.
test
.
TestCase
):
class
CalibrationDetectionEvaluationTest
(
tf
.
test
.
TestCase
):
def
_get_ece
(
self
,
ece_op
,
update_op
):
def
_get_ece
(
self
,
ece_op
,
update_op
):
...
...
research/object_detection/metrics/calibration_metrics_test.py
→
research/object_detection/metrics/calibration_metrics_
tf1_
test.py
View file @
b1025b3b
...
@@ -18,11 +18,14 @@ from __future__ import absolute_import
...
@@ -18,11 +18,14 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
numpy
as
np
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
from
object_detection.metrics
import
calibration_metrics
from
object_detection.metrics
import
calibration_metrics
from
object_detection.utils
import
tf_version
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Skipping TF1.X only test.'
)
class
CalibrationLibTest
(
tf
.
test
.
TestCase
):
class
CalibrationLibTest
(
tf
.
test
.
TestCase
):
@
staticmethod
@
staticmethod
...
...
research/object_detection/metrics/coco_evaluation.py
View file @
b1025b3b
...
@@ -24,6 +24,7 @@ import tensorflow.compat.v1 as tf
...
@@ -24,6 +24,7 @@ import tensorflow.compat.v1 as tf
from
object_detection.core
import
standard_fields
from
object_detection.core
import
standard_fields
from
object_detection.metrics
import
coco_tools
from
object_detection.metrics
import
coco_tools
from
object_detection.utils
import
json_utils
from
object_detection.utils
import
json_utils
from
object_detection.utils
import
np_mask_ops
from
object_detection.utils
import
object_detection_evaluation
from
object_detection.utils
import
object_detection_evaluation
...
@@ -1263,3 +1264,535 @@ class CocoMaskEvaluator(object_detection_evaluation.DetectionEvaluator):
...
@@ -1263,3 +1264,535 @@ class CocoMaskEvaluator(object_detection_evaluation.DetectionEvaluator):
eval_metric_ops
[
metric_name
]
=
(
tf
.
py_func
(
eval_metric_ops
[
metric_name
]
=
(
tf
.
py_func
(
value_func_factory
(
metric_name
),
[],
np
.
float32
),
update_op
)
value_func_factory
(
metric_name
),
[],
np
.
float32
),
update_op
)
return
eval_metric_ops
return
eval_metric_ops
class
CocoPanopticSegmentationEvaluator
(
object_detection_evaluation
.
DetectionEvaluator
):
"""Class to evaluate PQ (panoptic quality) metric on COCO dataset.
More details about this metric: https://arxiv.org/pdf/1801.00868.pdf.
"""
def
__init__
(
self
,
categories
,
include_metrics_per_category
=
False
,
iou_threshold
=
0.5
,
ioa_threshold
=
0.5
):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
include_metrics_per_category: If True, include metrics for each category.
iou_threshold: intersection-over-union threshold for mask matching (with
normal groundtruths).
ioa_threshold: intersection-over-area threshold for mask matching with
"is_crowd" groundtruths.
"""
super
(
CocoPanopticSegmentationEvaluator
,
self
).
__init__
(
categories
)
self
.
_groundtruth_masks
=
{}
self
.
_groundtruth_class_labels
=
{}
self
.
_groundtruth_is_crowd
=
{}
self
.
_predicted_masks
=
{}
self
.
_predicted_class_labels
=
{}
self
.
_include_metrics_per_category
=
include_metrics_per_category
self
.
_iou_threshold
=
iou_threshold
self
.
_ioa_threshold
=
ioa_threshold
def
clear
(
self
):
"""Clears the state to prepare for a fresh evaluation."""
self
.
_groundtruth_masks
.
clear
()
self
.
_groundtruth_class_labels
.
clear
()
self
.
_groundtruth_is_crowd
.
clear
()
self
.
_predicted_masks
.
clear
()
self
.
_predicted_class_labels
.
clear
()
def
add_single_ground_truth_image_info
(
self
,
image_id
,
groundtruth_dict
):
"""Adds groundtruth for a single image to be used for evaluation.
If the image has already been added, a warning is logged, and groundtruth is
ignored.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
InputDataFields.groundtruth_classes: integer numpy array of shape
[num_masks] containing 1-indexed groundtruth classes for the mask.
InputDataFields.groundtruth_instance_masks: uint8 numpy array of shape
[num_masks, image_height, image_width] containing groundtruth masks.
The elements of the array must be in {0, 1}.
InputDataFields.groundtruth_is_crowd (optional): integer numpy array of
shape [num_boxes] containing iscrowd flag for groundtruth boxes.
"""
if
image_id
in
self
.
_groundtruth_masks
:
tf
.
logging
.
warning
(
'Ignoring groundtruth with image %s, since it has already been '
'added to the ground truth database.'
,
image_id
)
return
self
.
_groundtruth_masks
[
image_id
]
=
groundtruth_dict
[
standard_fields
.
InputDataFields
.
groundtruth_instance_masks
]
self
.
_groundtruth_class_labels
[
image_id
]
=
groundtruth_dict
[
standard_fields
.
InputDataFields
.
groundtruth_classes
]
groundtruth_is_crowd
=
groundtruth_dict
.
get
(
standard_fields
.
InputDataFields
.
groundtruth_is_crowd
)
# Drop groundtruth_is_crowd if empty tensor.
if
groundtruth_is_crowd
is
not
None
and
not
groundtruth_is_crowd
.
size
>
0
:
groundtruth_is_crowd
=
None
if
groundtruth_is_crowd
is
not
None
:
self
.
_groundtruth_is_crowd
[
image_id
]
=
groundtruth_is_crowd
def
add_single_detected_image_info
(
self
,
image_id
,
detections_dict
):
"""Adds detections for a single image to be used for evaluation.
If a detection has already been added for this image id, a warning is
logged, and the detection is skipped.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
DetectionResultFields.detection_classes: integer numpy array of shape
[num_masks] containing 1-indexed detection classes for the masks.
DetectionResultFields.detection_masks: optional uint8 numpy array of
shape [num_masks, image_height, image_width] containing instance
masks. The elements of the array must be in {0, 1}.
Raises:
ValueError: If results and groundtruth shape don't match.
"""
if
image_id
not
in
self
.
_groundtruth_masks
:
raise
ValueError
(
'Missing groundtruth for image id: {}'
.
format
(
image_id
))
detection_masks
=
detections_dict
[
standard_fields
.
DetectionResultFields
.
detection_masks
]
self
.
_predicted_masks
[
image_id
]
=
detection_masks
self
.
_predicted_class_labels
[
image_id
]
=
detections_dict
[
standard_fields
.
DetectionResultFields
.
detection_classes
]
groundtruth_mask_shape
=
self
.
_groundtruth_masks
[
image_id
].
shape
if
groundtruth_mask_shape
[
1
:]
!=
detection_masks
.
shape
[
1
:]:
raise
ValueError
(
"The shape of results doesn't match groundtruth."
)
def
evaluate
(
self
):
"""Evaluates the detection masks and returns a dictionary of coco metrics.
Returns:
A dictionary holding -
1. summary_metric:
'PanopticQuality@%.2fIOU': mean panoptic quality averaged over classes at
the required IOU.
'SegmentationQuality@%.2fIOU': mean segmentation quality averaged over
classes at the required IOU.
'RecognitionQuality@%.2fIOU': mean recognition quality averaged over
classes at the required IOU.
'NumValidClasses': number of valid classes. A valid class should have at
least one normal (is_crowd=0) groundtruth mask or one predicted mask.
'NumTotalClasses': number of total classes.
2. per_category_pq: if include_metrics_per_category is True, category
specific results with keys of the form:
'PanopticQuality@%.2fIOU_ByCategory/category'.
"""
# Evaluate and accumulate the iou/tp/fp/fn.
sum_tp_iou
,
sum_num_tp
,
sum_num_fp
,
sum_num_fn
=
self
.
_evaluate_all_masks
()
# Compute PQ metric for each category and average over all classes.
mask_metrics
=
self
.
_compute_panoptic_metrics
(
sum_tp_iou
,
sum_num_tp
,
sum_num_fp
,
sum_num_fn
)
return
mask_metrics
def
get_estimator_eval_metric_ops
(
self
,
eval_dict
):
"""Returns a dictionary of eval metric ops.
Note that once value_op is called, the detections and groundtruth added via
update_op are cleared.
Args:
eval_dict: A dictionary that holds tensors for evaluating object detection
performance. For single-image evaluation, this dictionary may be
produced from eval_util.result_dict_for_single_example(). If multi-image
evaluation, `eval_dict` should contain the fields
'num_gt_masks_per_image' and 'num_det_masks_per_image' to properly unpad
the tensors from the batch.
Returns:
a dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
update ops must be run together and similarly all value ops must be run
together to guarantee correct behaviour.
"""
def
update_op
(
image_id_batched
,
groundtruth_classes_batched
,
groundtruth_instance_masks_batched
,
groundtruth_is_crowd_batched
,
num_gt_masks_per_image
,
detection_classes_batched
,
detection_masks_batched
,
num_det_masks_per_image
):
"""Update op for metrics."""
for
(
image_id
,
groundtruth_classes
,
groundtruth_instance_masks
,
groundtruth_is_crowd
,
num_gt_mask
,
detection_classes
,
detection_masks
,
num_det_mask
)
in
zip
(
image_id_batched
,
groundtruth_classes_batched
,
groundtruth_instance_masks_batched
,
groundtruth_is_crowd_batched
,
num_gt_masks_per_image
,
detection_classes_batched
,
detection_masks_batched
,
num_det_masks_per_image
):
self
.
add_single_ground_truth_image_info
(
image_id
,
{
'groundtruth_classes'
:
groundtruth_classes
[:
num_gt_mask
],
'groundtruth_instance_masks'
:
groundtruth_instance_masks
[:
num_gt_mask
],
'groundtruth_is_crowd'
:
groundtruth_is_crowd
[:
num_gt_mask
]
})
self
.
add_single_detected_image_info
(
image_id
,
{
'detection_classes'
:
detection_classes
[:
num_det_mask
],
'detection_masks'
:
detection_masks
[:
num_det_mask
]
})
# Unpack items from the evaluation dictionary.
(
image_id
,
groundtruth_classes
,
groundtruth_instance_masks
,
groundtruth_is_crowd
,
num_gt_masks_per_image
,
detection_classes
,
detection_masks
,
num_det_masks_per_image
)
=
self
.
_unpack_evaluation_dictionary_items
(
eval_dict
)
update_op
=
tf
.
py_func
(
update_op
,
[
image_id
,
groundtruth_classes
,
groundtruth_instance_masks
,
groundtruth_is_crowd
,
num_gt_masks_per_image
,
detection_classes
,
detection_masks
,
num_det_masks_per_image
],
[])
metric_names
=
[
'PanopticQuality@%.2fIOU'
%
self
.
_iou_threshold
,
'SegmentationQuality@%.2fIOU'
%
self
.
_iou_threshold
,
'RecognitionQuality@%.2fIOU'
%
self
.
_iou_threshold
]
if
self
.
_include_metrics_per_category
:
for
category_dict
in
self
.
_categories
:
metric_names
.
append
(
'PanopticQuality@%.2fIOU_ByCategory/%s'
%
(
self
.
_iou_threshold
,
category_dict
[
'name'
]))
def
first_value_func
():
self
.
_metrics
=
self
.
evaluate
()
self
.
clear
()
return
np
.
float32
(
self
.
_metrics
[
metric_names
[
0
]])
def
value_func_factory
(
metric_name
):
def
value_func
():
return
np
.
float32
(
self
.
_metrics
[
metric_name
])
return
value_func
# Ensure that the metrics are only evaluated once.
first_value_op
=
tf
.
py_func
(
first_value_func
,
[],
tf
.
float32
)
eval_metric_ops
=
{
metric_names
[
0
]:
(
first_value_op
,
update_op
)}
with
tf
.
control_dependencies
([
first_value_op
]):
for
metric_name
in
metric_names
[
1
:]:
eval_metric_ops
[
metric_name
]
=
(
tf
.
py_func
(
value_func_factory
(
metric_name
),
[],
np
.
float32
),
update_op
)
return
eval_metric_ops
def
_evaluate_all_masks
(
self
):
"""Evaluate all masks and compute sum iou/TP/FP/FN."""
sum_num_tp
=
{
category
[
'id'
]:
0
for
category
in
self
.
_categories
}
sum_num_fp
=
sum_num_tp
.
copy
()
sum_num_fn
=
sum_num_tp
.
copy
()
sum_tp_iou
=
sum_num_tp
.
copy
()
for
image_id
in
self
.
_groundtruth_class_labels
:
# Separate normal and is_crowd groundtruth
crowd_gt_indices
=
self
.
_groundtruth_is_crowd
.
get
(
image_id
)
(
normal_gt_masks
,
normal_gt_classes
,
crowd_gt_masks
,
crowd_gt_classes
)
=
self
.
_separate_normal_and_crowd_labels
(
crowd_gt_indices
,
self
.
_groundtruth_masks
[
image_id
],
self
.
_groundtruth_class_labels
[
image_id
])
# Mask matching to normal GT.
predicted_masks
=
self
.
_predicted_masks
[
image_id
]
predicted_class_labels
=
self
.
_predicted_class_labels
[
image_id
]
(
overlaps
,
pred_matched
,
gt_matched
)
=
self
.
_match_predictions_to_groundtruths
(
predicted_masks
,
predicted_class_labels
,
normal_gt_masks
,
normal_gt_classes
,
self
.
_iou_threshold
,
is_crowd
=
False
,
with_replacement
=
False
)
# Accumulate true positives.
for
(
class_id
,
is_matched
,
overlap
)
in
zip
(
predicted_class_labels
,
pred_matched
,
overlaps
):
if
is_matched
:
sum_num_tp
[
class_id
]
+=
1
sum_tp_iou
[
class_id
]
+=
overlap
# Accumulate false negatives.
for
(
class_id
,
is_matched
)
in
zip
(
normal_gt_classes
,
gt_matched
):
if
not
is_matched
:
sum_num_fn
[
class_id
]
+=
1
# Match remaining predictions to crowd gt.
remained_pred_indices
=
np
.
logical_not
(
pred_matched
)
remained_pred_masks
=
predicted_masks
[
remained_pred_indices
,
:,
:]
remained_pred_classes
=
predicted_class_labels
[
remained_pred_indices
]
_
,
pred_matched
,
_
=
self
.
_match_predictions_to_groundtruths
(
remained_pred_masks
,
remained_pred_classes
,
crowd_gt_masks
,
crowd_gt_classes
,
self
.
_ioa_threshold
,
is_crowd
=
True
,
with_replacement
=
True
)
# Accumulate false positives
for
(
class_id
,
is_matched
)
in
zip
(
remained_pred_classes
,
pred_matched
):
if
not
is_matched
:
sum_num_fp
[
class_id
]
+=
1
return
sum_tp_iou
,
sum_num_tp
,
sum_num_fp
,
sum_num_fn
def
_compute_panoptic_metrics
(
self
,
sum_tp_iou
,
sum_num_tp
,
sum_num_fp
,
sum_num_fn
):
"""Compute PQ metric for each category and average over all classes.
Args:
sum_tp_iou: dict, summed true positive intersection-over-union (IoU) for
each class, keyed by class_id.
sum_num_tp: the total number of true positives for each class, keyed by
class_id.
sum_num_fp: the total number of false positives for each class, keyed by
class_id.
sum_num_fn: the total number of false negatives for each class, keyed by
class_id.
Returns:
mask_metrics: a dictionary containing averaged metrics over all classes,
and per-category metrics if required.
"""
mask_metrics
=
{}
sum_pq
=
0
sum_sq
=
0
sum_rq
=
0
num_valid_classes
=
0
for
category
in
self
.
_categories
:
class_id
=
category
[
'id'
]
(
panoptic_quality
,
segmentation_quality
,
recognition_quality
)
=
self
.
_compute_panoptic_metrics_single_class
(
sum_tp_iou
[
class_id
],
sum_num_tp
[
class_id
],
sum_num_fp
[
class_id
],
sum_num_fn
[
class_id
])
if
panoptic_quality
is
not
None
:
sum_pq
+=
panoptic_quality
sum_sq
+=
segmentation_quality
sum_rq
+=
recognition_quality
num_valid_classes
+=
1
if
self
.
_include_metrics_per_category
:
mask_metrics
[
'PanopticQuality@%.2fIOU_ByCategory/%s'
%
(
self
.
_iou_threshold
,
category
[
'name'
])]
=
panoptic_quality
mask_metrics
[
'PanopticQuality@%.2fIOU'
%
self
.
_iou_threshold
]
=
sum_pq
/
num_valid_classes
mask_metrics
[
'SegmentationQuality@%.2fIOU'
%
self
.
_iou_threshold
]
=
sum_sq
/
num_valid_classes
mask_metrics
[
'RecognitionQuality@%.2fIOU'
%
self
.
_iou_threshold
]
=
sum_rq
/
num_valid_classes
mask_metrics
[
'NumValidClasses'
]
=
num_valid_classes
mask_metrics
[
'NumTotalClasses'
]
=
len
(
self
.
_categories
)
return
mask_metrics
def
_compute_panoptic_metrics_single_class
(
self
,
sum_tp_iou
,
num_tp
,
num_fp
,
num_fn
):
"""Compute panoptic metrics: panoptic/segmentation/recognition quality.
More computation details in https://arxiv.org/pdf/1801.00868.pdf.
Args:
sum_tp_iou: summed true positive intersection-over-union (IoU) for a
specific class.
num_tp: the total number of true positives for a specific class.
num_fp: the total number of false positives for a specific class.
num_fn: the total number of false negatives for a specific class.
Returns:
panoptic_quality: sum_tp_iou / (num_tp + 0.5*num_fp + 0.5*num_fn).
segmentation_quality: sum_tp_iou / num_tp.
recognition_quality: num_tp / (num_tp + 0.5*num_fp + 0.5*num_fn).
"""
denominator
=
num_tp
+
0.5
*
num_fp
+
0.5
*
num_fn
# Calculate metric only if there is at least one GT or one prediction.
if
denominator
>
0
:
recognition_quality
=
num_tp
/
denominator
if
num_tp
>
0
:
segmentation_quality
=
sum_tp_iou
/
num_tp
else
:
# If there is no TP for this category.
segmentation_quality
=
0
panoptic_quality
=
segmentation_quality
*
recognition_quality
return
panoptic_quality
,
segmentation_quality
,
recognition_quality
else
:
return
None
,
None
,
None
def
_separate_normal_and_crowd_labels
(
self
,
crowd_gt_indices
,
groundtruth_masks
,
groundtruth_classes
):
"""Separate normal and crowd groundtruth class_labels and masks.
Args:
crowd_gt_indices: None or array of shape [num_groundtruths]. If None, all
groundtruths are treated as normal ones.
groundtruth_masks: array of shape [num_groundtruths, height, width].
groundtruth_classes: array of shape [num_groundtruths].
Returns:
normal_gt_masks: array of shape [num_normal_groundtruths, height, width].
normal_gt_classes: array of shape [num_normal_groundtruths].
crowd_gt_masks: array of shape [num_crowd_groundtruths, height, width].
crowd_gt_classes: array of shape [num_crowd_groundtruths].
Raises:
ValueError: if the shape of groundtruth classes doesn't match groundtruth
masks or if the shape of crowd_gt_indices.
"""
if
groundtruth_masks
.
shape
[
0
]
!=
groundtruth_classes
.
shape
[
0
]:
raise
ValueError
(
"The number of masks doesn't match the number of labels."
)
if
crowd_gt_indices
is
None
:
# All gts are treated as normal
crowd_gt_indices
=
np
.
zeros
(
groundtruth_masks
.
shape
,
dtype
=
np
.
bool
)
else
:
if
groundtruth_masks
.
shape
[
0
]
!=
crowd_gt_indices
.
shape
[
0
]:
raise
ValueError
(
"The number of masks doesn't match the number of is_crowd labels."
)
crowd_gt_indices
=
crowd_gt_indices
.
astype
(
np
.
bool
)
normal_gt_indices
=
np
.
logical_not
(
crowd_gt_indices
)
if
normal_gt_indices
.
size
:
normal_gt_masks
=
groundtruth_masks
[
normal_gt_indices
,
:,
:]
normal_gt_classes
=
groundtruth_classes
[
normal_gt_indices
]
crowd_gt_masks
=
groundtruth_masks
[
crowd_gt_indices
,
:,
:]
crowd_gt_classes
=
groundtruth_classes
[
crowd_gt_indices
]
else
:
# No groundtruths available, groundtruth_masks.shape = (0, h, w)
normal_gt_masks
=
groundtruth_masks
normal_gt_classes
=
groundtruth_classes
crowd_gt_masks
=
groundtruth_masks
crowd_gt_classes
=
groundtruth_classes
return
normal_gt_masks
,
normal_gt_classes
,
crowd_gt_masks
,
crowd_gt_classes
def
_match_predictions_to_groundtruths
(
self
,
predicted_masks
,
predicted_classes
,
groundtruth_masks
,
groundtruth_classes
,
matching_threshold
,
is_crowd
=
False
,
with_replacement
=
False
):
"""Match the predicted masks to groundtruths.
Args:
predicted_masks: array of shape [num_predictions, height, width].
predicted_classes: array of shape [num_predictions].
groundtruth_masks: array of shape [num_groundtruths, height, width].
groundtruth_classes: array of shape [num_groundtruths].
matching_threshold: if the overlap between a prediction and a groundtruth
is larger than this threshold, the prediction is true positive.
is_crowd: whether the groundtruths are crowd annotation or not. If True,
use intersection over area (IoA) as the overlapping metric; otherwise
use intersection over union (IoU).
with_replacement: whether a groundtruth can be matched to multiple
predictions. By default, for normal groundtruths, only 1-1 matching is
allowed for normal groundtruths; for crowd groundtruths, 1-to-many must
be allowed.
Returns:
best_overlaps: array of shape [num_predictions]. Values representing the
IoU
or IoA with best matched groundtruth.
pred_matched: array of shape [num_predictions]. Boolean value representing
whether the ith prediction is matched to a groundtruth.
gt_matched: array of shape [num_groundtruth]. Boolean value representing
whether the ith groundtruth is matched to a prediction.
Raises:
ValueError: if the shape of groundtruth/predicted masks doesn't match
groundtruth/predicted classes.
"""
if
groundtruth_masks
.
shape
[
0
]
!=
groundtruth_classes
.
shape
[
0
]:
raise
ValueError
(
"The number of GT masks doesn't match the number of labels."
)
if
predicted_masks
.
shape
[
0
]
!=
predicted_classes
.
shape
[
0
]:
raise
ValueError
(
"The number of predicted masks doesn't match the number of labels."
)
gt_matched
=
np
.
zeros
(
groundtruth_classes
.
shape
,
dtype
=
np
.
bool
)
pred_matched
=
np
.
zeros
(
predicted_classes
.
shape
,
dtype
=
np
.
bool
)
best_overlaps
=
np
.
zeros
(
predicted_classes
.
shape
)
for
pid
in
range
(
predicted_classes
.
shape
[
0
]):
best_overlap
=
0
matched_gt_id
=
-
1
for
gid
in
range
(
groundtruth_classes
.
shape
[
0
]):
if
predicted_classes
[
pid
]
==
groundtruth_classes
[
gid
]:
if
(
not
with_replacement
)
and
gt_matched
[
gid
]:
continue
if
not
is_crowd
:
overlap
=
np_mask_ops
.
iou
(
predicted_masks
[
pid
:
pid
+
1
],
groundtruth_masks
[
gid
:
gid
+
1
])[
0
,
0
]
else
:
overlap
=
np_mask_ops
.
ioa
(
groundtruth_masks
[
gid
:
gid
+
1
],
predicted_masks
[
pid
:
pid
+
1
])[
0
,
0
]
if
overlap
>=
matching_threshold
and
overlap
>
best_overlap
:
matched_gt_id
=
gid
best_overlap
=
overlap
if
matched_gt_id
>=
0
:
gt_matched
[
matched_gt_id
]
=
True
pred_matched
[
pid
]
=
True
best_overlaps
[
pid
]
=
best_overlap
return
best_overlaps
,
pred_matched
,
gt_matched
def
_unpack_evaluation_dictionary_items
(
self
,
eval_dict
):
"""Unpack items from the evaluation dictionary."""
input_data_fields
=
standard_fields
.
InputDataFields
detection_fields
=
standard_fields
.
DetectionResultFields
image_id
=
eval_dict
[
input_data_fields
.
key
]
groundtruth_classes
=
eval_dict
[
input_data_fields
.
groundtruth_classes
]
groundtruth_instance_masks
=
eval_dict
[
input_data_fields
.
groundtruth_instance_masks
]
groundtruth_is_crowd
=
eval_dict
.
get
(
input_data_fields
.
groundtruth_is_crowd
,
None
)
num_gt_masks_per_image
=
eval_dict
.
get
(
input_data_fields
.
num_groundtruth_boxes
,
None
)
detection_classes
=
eval_dict
[
detection_fields
.
detection_classes
]
detection_masks
=
eval_dict
[
detection_fields
.
detection_masks
]
num_det_masks_per_image
=
eval_dict
.
get
(
detection_fields
.
num_detections
,
None
)
if
groundtruth_is_crowd
is
None
:
groundtruth_is_crowd
=
tf
.
zeros_like
(
groundtruth_classes
,
dtype
=
tf
.
bool
)
if
not
image_id
.
shape
.
as_list
():
# Apply a batch dimension to all tensors.
image_id
=
tf
.
expand_dims
(
image_id
,
0
)
groundtruth_classes
=
tf
.
expand_dims
(
groundtruth_classes
,
0
)
groundtruth_instance_masks
=
tf
.
expand_dims
(
groundtruth_instance_masks
,
0
)
groundtruth_is_crowd
=
tf
.
expand_dims
(
groundtruth_is_crowd
,
0
)
detection_classes
=
tf
.
expand_dims
(
detection_classes
,
0
)
detection_masks
=
tf
.
expand_dims
(
detection_masks
,
0
)
if
num_gt_masks_per_image
is
None
:
num_gt_masks_per_image
=
tf
.
shape
(
groundtruth_classes
)[
1
:
2
]
else
:
num_gt_masks_per_image
=
tf
.
expand_dims
(
num_gt_masks_per_image
,
0
)
if
num_det_masks_per_image
is
None
:
num_det_masks_per_image
=
tf
.
shape
(
detection_classes
)[
1
:
2
]
else
:
num_det_masks_per_image
=
tf
.
expand_dims
(
num_det_masks_per_image
,
0
)
else
:
if
num_gt_masks_per_image
is
None
:
num_gt_masks_per_image
=
tf
.
tile
(
tf
.
shape
(
groundtruth_classes
)[
1
:
2
],
multiples
=
tf
.
shape
(
groundtruth_classes
)[
0
:
1
])
if
num_det_masks_per_image
is
None
:
num_det_masks_per_image
=
tf
.
tile
(
tf
.
shape
(
detection_classes
)[
1
:
2
],
multiples
=
tf
.
shape
(
detection_classes
)[
0
:
1
])
return
(
image_id
,
groundtruth_classes
,
groundtruth_instance_masks
,
groundtruth_is_crowd
,
num_gt_masks_per_image
,
detection_classes
,
detection_masks
,
num_det_masks_per_image
)
research/object_detection/metrics/coco_evaluation_test.py
View file @
b1025b3b
...
@@ -18,10 +18,12 @@ from __future__ import absolute_import
...
@@ -18,10 +18,12 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
numpy
as
np
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
from
object_detection.core
import
standard_fields
from
object_detection.core
import
standard_fields
from
object_detection.metrics
import
coco_evaluation
from
object_detection.metrics
import
coco_evaluation
from
object_detection.utils
import
tf_version
def
_get_categories_list
():
def
_get_categories_list
():
...
@@ -250,6 +252,7 @@ class CocoDetectionEvaluationTest(tf.test.TestCase):
...
@@ -250,6 +252,7 @@ class CocoDetectionEvaluationTest(tf.test.TestCase):
})
})
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Only Supported in TF1.X'
)
class
CocoEvaluationPyFuncTest
(
tf
.
test
.
TestCase
):
class
CocoEvaluationPyFuncTest
(
tf
.
test
.
TestCase
):
def
testGetOneMAPWithMatchingGroundtruthAndDetections
(
self
):
def
testGetOneMAPWithMatchingGroundtruthAndDetections
(
self
):
...
@@ -926,6 +929,7 @@ class CocoKeypointEvaluationTest(tf.test.TestCase):
...
@@ -926,6 +929,7 @@ class CocoKeypointEvaluationTest(tf.test.TestCase):
-
1.0
)
-
1.0
)
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Only Supported in TF1.X'
)
class
CocoKeypointEvaluationPyFuncTest
(
tf
.
test
.
TestCase
):
class
CocoKeypointEvaluationPyFuncTest
(
tf
.
test
.
TestCase
):
def
testGetOneMAPWithMatchingKeypoints
(
self
):
def
testGetOneMAPWithMatchingKeypoints
(
self
):
...
@@ -1438,6 +1442,7 @@ class CocoMaskEvaluationTest(tf.test.TestCase):
...
@@ -1438,6 +1442,7 @@ class CocoMaskEvaluationTest(tf.test.TestCase):
self
.
assertFalse
(
coco_evaluator
.
_detection_masks_list
)
self
.
assertFalse
(
coco_evaluator
.
_detection_masks_list
)
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Only Supported in TF1.X'
)
class
CocoMaskEvaluationPyFuncTest
(
tf
.
test
.
TestCase
):
class
CocoMaskEvaluationPyFuncTest
(
tf
.
test
.
TestCase
):
def
testAddEvalDict
(
self
):
def
testAddEvalDict
(
self
):
...
@@ -1716,5 +1721,221 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
...
@@ -1716,5 +1721,221 @@ class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
self
.
assertFalse
(
coco_evaluator
.
_detection_masks_list
)
self
.
assertFalse
(
coco_evaluator
.
_detection_masks_list
)
def
_get_panoptic_test_data
():
# image1 contains 3 people in gt, (2 normal annotation and 1 "is_crowd"
# annotation), and 3 people in prediction.
gt_masks1
=
np
.
zeros
((
3
,
50
,
50
),
dtype
=
np
.
uint8
)
result_masks1
=
np
.
zeros
((
3
,
50
,
50
),
dtype
=
np
.
uint8
)
gt_masks1
[
0
,
10
:
20
,
20
:
30
]
=
1
result_masks1
[
0
,
10
:
18
,
20
:
30
]
=
1
gt_masks1
[
1
,
25
:
30
,
25
:
35
]
=
1
result_masks1
[
1
,
18
:
25
,
25
:
30
]
=
1
gt_masks1
[
2
,
40
:
50
,
40
:
50
]
=
1
result_masks1
[
2
,
47
:
50
,
47
:
50
]
=
1
gt_class1
=
np
.
array
([
1
,
1
,
1
])
gt_is_crowd1
=
np
.
array
([
0
,
0
,
1
])
result_class1
=
np
.
array
([
1
,
1
,
1
])
# image2 contains 1 dog and 1 cat in gt, while 1 person and 1 dog in
# prediction.
gt_masks2
=
np
.
zeros
((
2
,
30
,
40
),
dtype
=
np
.
uint8
)
result_masks2
=
np
.
zeros
((
2
,
30
,
40
),
dtype
=
np
.
uint8
)
gt_masks2
[
0
,
5
:
15
,
20
:
35
]
=
1
gt_masks2
[
1
,
20
:
30
,
0
:
10
]
=
1
result_masks2
[
0
,
20
:
25
,
10
:
15
]
=
1
result_masks2
[
1
,
6
:
15
,
15
:
35
]
=
1
gt_class2
=
np
.
array
([
2
,
3
])
gt_is_crowd2
=
np
.
array
([
0
,
0
])
result_class2
=
np
.
array
([
1
,
2
])
gt_class
=
[
gt_class1
,
gt_class2
]
gt_masks
=
[
gt_masks1
,
gt_masks2
]
gt_is_crowd
=
[
gt_is_crowd1
,
gt_is_crowd2
]
result_class
=
[
result_class1
,
result_class2
]
result_masks
=
[
result_masks1
,
result_masks2
]
return
gt_class
,
gt_masks
,
gt_is_crowd
,
result_class
,
result_masks
class
CocoPanopticEvaluationTest
(
tf
.
test
.
TestCase
):
def
test_panoptic_quality
(
self
):
pq_evaluator
=
coco_evaluation
.
CocoPanopticSegmentationEvaluator
(
_get_categories_list
(),
include_metrics_per_category
=
True
)
(
gt_class
,
gt_masks
,
gt_is_crowd
,
result_class
,
result_masks
)
=
_get_panoptic_test_data
()
for
i
in
range
(
2
):
pq_evaluator
.
add_single_ground_truth_image_info
(
image_id
=
'image%d'
%
i
,
groundtruth_dict
=
{
standard_fields
.
InputDataFields
.
groundtruth_classes
:
gt_class
[
i
],
standard_fields
.
InputDataFields
.
groundtruth_instance_masks
:
gt_masks
[
i
],
standard_fields
.
InputDataFields
.
groundtruth_is_crowd
:
gt_is_crowd
[
i
]
})
pq_evaluator
.
add_single_detected_image_info
(
image_id
=
'image%d'
%
i
,
detections_dict
=
{
standard_fields
.
DetectionResultFields
.
detection_classes
:
result_class
[
i
],
standard_fields
.
DetectionResultFields
.
detection_masks
:
result_masks
[
i
]
})
metrics
=
pq_evaluator
.
evaluate
()
self
.
assertAlmostEqual
(
metrics
[
'PanopticQuality@0.50IOU_ByCategory/person'
],
0.32
)
self
.
assertAlmostEqual
(
metrics
[
'PanopticQuality@0.50IOU_ByCategory/dog'
],
135.0
/
195
)
self
.
assertAlmostEqual
(
metrics
[
'PanopticQuality@0.50IOU_ByCategory/cat'
],
0
)
self
.
assertAlmostEqual
(
metrics
[
'SegmentationQuality@0.50IOU'
],
(
0.8
+
135.0
/
195
)
/
3
)
self
.
assertAlmostEqual
(
metrics
[
'RecognitionQuality@0.50IOU'
],
(
0.4
+
1
)
/
3
)
self
.
assertAlmostEqual
(
metrics
[
'PanopticQuality@0.50IOU'
],
(
0.32
+
135.0
/
195
)
/
3
)
self
.
assertEqual
(
metrics
[
'NumValidClasses'
],
3
)
self
.
assertEqual
(
metrics
[
'NumTotalClasses'
],
3
)
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Only Supported in TF1.X'
)
class
CocoPanopticEvaluationPyFuncTest
(
tf
.
test
.
TestCase
):
def
testPanopticQualityNoBatch
(
self
):
pq_evaluator
=
coco_evaluation
.
CocoPanopticSegmentationEvaluator
(
_get_categories_list
(),
include_metrics_per_category
=
True
)
image_id
=
tf
.
placeholder
(
tf
.
string
,
shape
=
())
groundtruth_classes
=
tf
.
placeholder
(
tf
.
int32
,
shape
=
(
None
))
groundtruth_masks
=
tf
.
placeholder
(
tf
.
uint8
,
shape
=
(
None
,
None
,
None
))
groundtruth_is_crowd
=
tf
.
placeholder
(
tf
.
int32
,
shape
=
(
None
))
detection_classes
=
tf
.
placeholder
(
tf
.
int32
,
shape
=
(
None
))
detection_masks
=
tf
.
placeholder
(
tf
.
uint8
,
shape
=
(
None
,
None
,
None
))
input_data_fields
=
standard_fields
.
InputDataFields
detection_fields
=
standard_fields
.
DetectionResultFields
eval_dict
=
{
input_data_fields
.
key
:
image_id
,
input_data_fields
.
groundtruth_classes
:
groundtruth_classes
,
input_data_fields
.
groundtruth_instance_masks
:
groundtruth_masks
,
input_data_fields
.
groundtruth_is_crowd
:
groundtruth_is_crowd
,
detection_fields
.
detection_classes
:
detection_classes
,
detection_fields
.
detection_masks
:
detection_masks
,
}
eval_metric_ops
=
pq_evaluator
.
get_estimator_eval_metric_ops
(
eval_dict
)
_
,
update_op
=
eval_metric_ops
[
'PanopticQuality@0.50IOU'
]
(
gt_class
,
gt_masks
,
gt_is_crowd
,
result_class
,
result_masks
)
=
_get_panoptic_test_data
()
with
self
.
test_session
()
as
sess
:
for
i
in
range
(
2
):
sess
.
run
(
update_op
,
feed_dict
=
{
image_id
:
'image%d'
%
i
,
groundtruth_classes
:
gt_class
[
i
],
groundtruth_masks
:
gt_masks
[
i
],
groundtruth_is_crowd
:
gt_is_crowd
[
i
],
detection_classes
:
result_class
[
i
],
detection_masks
:
result_masks
[
i
]
})
metrics
=
{}
for
key
,
(
value_op
,
_
)
in
eval_metric_ops
.
items
():
metrics
[
key
]
=
value_op
metrics
=
sess
.
run
(
metrics
)
self
.
assertAlmostEqual
(
metrics
[
'PanopticQuality@0.50IOU'
],
(
0.32
+
135.0
/
195
)
/
3
)
def
testPanopticQualityBatched
(
self
):
pq_evaluator
=
coco_evaluation
.
CocoPanopticSegmentationEvaluator
(
_get_categories_list
(),
include_metrics_per_category
=
True
)
batch_size
=
2
image_id
=
tf
.
placeholder
(
tf
.
string
,
shape
=
(
batch_size
))
groundtruth_classes
=
tf
.
placeholder
(
tf
.
int32
,
shape
=
(
batch_size
,
None
))
groundtruth_masks
=
tf
.
placeholder
(
tf
.
uint8
,
shape
=
(
batch_size
,
None
,
None
,
None
))
groundtruth_is_crowd
=
tf
.
placeholder
(
tf
.
int32
,
shape
=
(
batch_size
,
None
))
detection_classes
=
tf
.
placeholder
(
tf
.
int32
,
shape
=
(
batch_size
,
None
))
detection_masks
=
tf
.
placeholder
(
tf
.
uint8
,
shape
=
(
batch_size
,
None
,
None
,
None
))
num_gt_masks_per_image
=
tf
.
placeholder
(
tf
.
int32
,
shape
=
(
batch_size
))
num_det_masks_per_image
=
tf
.
placeholder
(
tf
.
int32
,
shape
=
(
batch_size
))
input_data_fields
=
standard_fields
.
InputDataFields
detection_fields
=
standard_fields
.
DetectionResultFields
eval_dict
=
{
input_data_fields
.
key
:
image_id
,
input_data_fields
.
groundtruth_classes
:
groundtruth_classes
,
input_data_fields
.
groundtruth_instance_masks
:
groundtruth_masks
,
input_data_fields
.
groundtruth_is_crowd
:
groundtruth_is_crowd
,
input_data_fields
.
num_groundtruth_boxes
:
num_gt_masks_per_image
,
detection_fields
.
detection_classes
:
detection_classes
,
detection_fields
.
detection_masks
:
detection_masks
,
detection_fields
.
num_detections
:
num_det_masks_per_image
,
}
eval_metric_ops
=
pq_evaluator
.
get_estimator_eval_metric_ops
(
eval_dict
)
_
,
update_op
=
eval_metric_ops
[
'PanopticQuality@0.50IOU'
]
(
gt_class
,
gt_masks
,
gt_is_crowd
,
result_class
,
result_masks
)
=
_get_panoptic_test_data
()
with
self
.
test_session
()
as
sess
:
sess
.
run
(
update_op
,
feed_dict
=
{
image_id
:
[
'image0'
,
'image1'
],
groundtruth_classes
:
np
.
stack
([
gt_class
[
0
],
np
.
pad
(
gt_class
[
1
],
(
0
,
1
),
mode
=
'constant'
)
],
axis
=
0
),
groundtruth_masks
:
np
.
stack
([
np
.
pad
(
gt_masks
[
0
],
((
0
,
0
),
(
0
,
10
),
(
0
,
10
)),
mode
=
'constant'
),
np
.
pad
(
gt_masks
[
1
],
((
0
,
1
),
(
0
,
30
),
(
0
,
20
)),
mode
=
'constant'
),
],
axis
=
0
),
groundtruth_is_crowd
:
np
.
stack
([
gt_is_crowd
[
0
],
np
.
pad
(
gt_is_crowd
[
1
],
(
0
,
1
),
mode
=
'constant'
)
],
axis
=
0
),
num_gt_masks_per_image
:
np
.
array
([
3
,
2
]),
detection_classes
:
np
.
stack
([
result_class
[
0
],
np
.
pad
(
result_class
[
1
],
(
0
,
1
),
mode
=
'constant'
)
],
axis
=
0
),
detection_masks
:
np
.
stack
([
np
.
pad
(
result_masks
[
0
],
((
0
,
0
),
(
0
,
10
),
(
0
,
10
)),
mode
=
'constant'
),
np
.
pad
(
result_masks
[
1
],
((
0
,
1
),
(
0
,
30
),
(
0
,
20
)),
mode
=
'constant'
),
],
axis
=
0
),
num_det_masks_per_image
:
np
.
array
([
3
,
2
]),
})
metrics
=
{}
for
key
,
(
value_op
,
_
)
in
eval_metric_ops
.
items
():
metrics
[
key
]
=
value_op
metrics
=
sess
.
run
(
metrics
)
self
.
assertAlmostEqual
(
metrics
[
'PanopticQuality@0.50IOU'
],
(
0.32
+
135.0
/
195
)
/
3
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
tf
.
test
.
main
()
research/object_detection/metrics/coco_tools.py
View file @
b1025b3b
...
@@ -52,6 +52,7 @@ from pycocotools import coco
...
@@ -52,6 +52,7 @@ from pycocotools import coco
from
pycocotools
import
cocoeval
from
pycocotools
import
cocoeval
from
pycocotools
import
mask
from
pycocotools
import
mask
import
six
from
six.moves
import
range
from
six.moves
import
range
from
six.moves
import
zip
from
six.moves
import
zip
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
...
@@ -353,7 +354,9 @@ def _RleCompress(masks):
...
@@ -353,7 +354,9 @@ def _RleCompress(masks):
Returns:
Returns:
A pycocotools Run-length encoding of the mask.
A pycocotools Run-length encoding of the mask.
"""
"""
return
mask
.
encode
(
np
.
asfortranarray
(
masks
))
rle
=
mask
.
encode
(
np
.
asfortranarray
(
masks
))
rle
[
'counts'
]
=
six
.
ensure_str
(
rle
[
'counts'
])
return
rle
def
ExportSingleImageGroundtruthToCoco
(
image_id
,
def
ExportSingleImageGroundtruthToCoco
(
image_id
,
...
...
research/object_detection/metrics/offline_eval_map_corloc.py
View file @
b1025b3b
...
@@ -36,8 +36,8 @@ import os
...
@@ -36,8 +36,8 @@ import os
import
re
import
re
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
from
object_detection
import
eval_util
from
object_detection.core
import
standard_fields
from
object_detection.core
import
standard_fields
from
object_detection.legacy
import
evaluator
from
object_detection.metrics
import
tf_example_parser
from
object_detection.metrics
import
tf_example_parser
from
object_detection.utils
import
config_util
from
object_detection.utils
import
config_util
from
object_detection.utils
import
label_map_util
from
object_detection.utils
import
label_map_util
...
@@ -94,7 +94,7 @@ def read_data_and_evaluate(input_config, eval_config):
...
@@ -94,7 +94,7 @@ def read_data_and_evaluate(input_config, eval_config):
categories
=
label_map_util
.
create_categories_from_labelmap
(
categories
=
label_map_util
.
create_categories_from_labelmap
(
input_config
.
label_map_path
)
input_config
.
label_map_path
)
object_detection_evaluators
=
eval
uator
.
get_evaluators
(
object_detection_evaluators
=
eval
_util
.
get_evaluators
(
eval_config
,
categories
)
eval_config
,
categories
)
# Support a single evaluator
# Support a single evaluator
object_detection_evaluator
=
object_detection_evaluators
[
0
]
object_detection_evaluator
=
object_detection_evaluators
[
0
]
...
...
research/object_detection/model_lib_test.py
→
research/object_detection/model_lib_
tf1_
test.py
View file @
b1025b3b
...
@@ -20,19 +20,17 @@ from __future__ import print_function
...
@@ -20,19 +20,17 @@ from __future__ import print_function
import
functools
import
functools
import
os
import
os
import
unittest
import
numpy
as
np
import
numpy
as
np
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
from
tensorflow.contrib.tpu.python.tpu
import
tpu_config
from
tensorflow.contrib.tpu.python.tpu
import
tpu_estimator
from
object_detection
import
inputs
from
object_detection
import
inputs
from
object_detection
import
model_hparams
from
object_detection
import
model_hparams
from
object_detection
import
model_lib
from
object_detection
import
model_lib
from
object_detection.builders
import
model_builder
from
object_detection.builders
import
model_builder
from
object_detection.core
import
standard_fields
as
fields
from
object_detection.core
import
standard_fields
as
fields
from
object_detection.utils
import
config_util
from
object_detection.utils
import
config_util
from
object_detection.utils
import
tf_version
# Model for test. Options are:
# Model for test. Options are:
...
@@ -122,6 +120,7 @@ def _make_initializable_iterator(dataset):
...
@@ -122,6 +120,7 @@ def _make_initializable_iterator(dataset):
return
iterator
return
iterator
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Skipping TF1.X only test.'
)
class
ModelLibTest
(
tf
.
test
.
TestCase
):
class
ModelLibTest
(
tf
.
test
.
TestCase
):
@
classmethod
@
classmethod
...
@@ -337,8 +336,7 @@ class ModelLibTest(tf.test.TestCase):
...
@@ -337,8 +336,7 @@ class ModelLibTest(tf.test.TestCase):
def
test_create_tpu_estimator_and_inputs
(
self
):
def
test_create_tpu_estimator_and_inputs
(
self
):
"""Tests that number of train/eval defaults to config values."""
"""Tests that number of train/eval defaults to config values."""
run_config
=
tf
.
estimator
.
tpu
.
RunConfig
()
run_config
=
tpu_config
.
RunConfig
()
hparams
=
model_hparams
.
create_hparams
(
hparams
=
model_hparams
.
create_hparams
(
hparams_overrides
=
'load_pretrained=false'
)
hparams_overrides
=
'load_pretrained=false'
)
pipeline_config_path
=
get_pipeline_config_path
(
MODEL_NAME_FOR_TEST
)
pipeline_config_path
=
get_pipeline_config_path
(
MODEL_NAME_FOR_TEST
)
...
@@ -352,7 +350,7 @@ class ModelLibTest(tf.test.TestCase):
...
@@ -352,7 +350,7 @@ class ModelLibTest(tf.test.TestCase):
estimator
=
train_and_eval_dict
[
'estimator'
]
estimator
=
train_and_eval_dict
[
'estimator'
]
train_steps
=
train_and_eval_dict
[
'train_steps'
]
train_steps
=
train_and_eval_dict
[
'train_steps'
]
self
.
assertIsInstance
(
estimator
,
t
pu_
estimator
.
TPUEstimator
)
self
.
assertIsInstance
(
estimator
,
t
f
.
estimator
.
tpu
.
TPUEstimator
)
self
.
assertEqual
(
20
,
train_steps
)
self
.
assertEqual
(
20
,
train_steps
)
def
test_create_train_and_eval_specs
(
self
):
def
test_create_train_and_eval_specs
(
self
):
...
@@ -406,6 +404,7 @@ class ModelLibTest(tf.test.TestCase):
...
@@ -406,6 +404,7 @@ class ModelLibTest(tf.test.TestCase):
self
.
assertEqual
(
None
,
experiment
.
eval_steps
)
self
.
assertEqual
(
None
,
experiment
.
eval_steps
)
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Skipping TF1.X only test.'
)
class
UnbatchTensorsTest
(
tf
.
test
.
TestCase
):
class
UnbatchTensorsTest
(
tf
.
test
.
TestCase
):
def
test_unbatch_without_unpadding
(
self
):
def
test_unbatch_without_unpadding
(
self
):
...
...
research/object_detection/model_lib_
v
2_test.py
→
research/object_detection/model_lib_
tf
2_test.py
View file @
b1025b3b
...
@@ -20,7 +20,7 @@ from __future__ import print_function
...
@@ -20,7 +20,7 @@ from __future__ import print_function
import
os
import
os
import
tempfile
import
tempfile
import
unittest
import
numpy
as
np
import
numpy
as
np
import
six
import
six
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
...
@@ -32,6 +32,7 @@ from object_detection.builders import model_builder
...
@@ -32,6 +32,7 @@ from object_detection.builders import model_builder
from
object_detection.core
import
model
from
object_detection.core
import
model
from
object_detection.protos
import
train_pb2
from
object_detection.protos
import
train_pb2
from
object_detection.utils
import
config_util
from
object_detection.utils
import
config_util
from
object_detection.utils
import
tf_version
if
six
.
PY2
:
if
six
.
PY2
:
import
mock
# pylint: disable=g-importing-member,g-import-not-at-top
import
mock
# pylint: disable=g-importing-member,g-import-not-at-top
...
@@ -72,6 +73,7 @@ def _get_config_kwarg_overrides():
...
@@ -72,6 +73,7 @@ def _get_config_kwarg_overrides():
}
}
@
unittest
.
skipIf
(
tf_version
.
is_tf1
(),
'Skipping TF2.X only test.'
)
class
ModelLibTest
(
tf
.
test
.
TestCase
):
class
ModelLibTest
(
tf
.
test
.
TestCase
):
@
classmethod
@
classmethod
...
@@ -139,6 +141,7 @@ class SimpleModel(model.DetectionModel):
...
@@ -139,6 +141,7 @@ class SimpleModel(model.DetectionModel):
return
[]
return
[]
@
unittest
.
skipIf
(
tf_version
.
is_tf1
(),
'Skipping TF2.X only test.'
)
class
ModelCheckpointTest
(
tf
.
test
.
TestCase
):
class
ModelCheckpointTest
(
tf
.
test
.
TestCase
):
"""Test for model checkpoint related functionality."""
"""Test for model checkpoint related functionality."""
...
@@ -171,6 +174,7 @@ class IncompatibleModel(SimpleModel):
...
@@ -171,6 +174,7 @@ class IncompatibleModel(SimpleModel):
return
{
'weight'
:
self
.
weight
}
return
{
'weight'
:
self
.
weight
}
@
unittest
.
skipIf
(
tf_version
.
is_tf1
(),
'Skipping TF2.X only test.'
)
class
CheckpointV2Test
(
tf
.
test
.
TestCase
):
class
CheckpointV2Test
(
tf
.
test
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
...
...
research/object_detection/model_lib_v2.py
View file @
b1025b3b
...
@@ -358,7 +358,7 @@ def load_fine_tune_checkpoint(
...
@@ -358,7 +358,7 @@ def load_fine_tune_checkpoint(
ckpt
.
restore
(
checkpoint_path
).
assert_existing_objects_matched
()
ckpt
.
restore
(
checkpoint_path
).
assert_existing_objects_matched
()
def
_
get_filepath
(
strategy
,
filepath
):
def
get_filepath
(
strategy
,
filepath
):
"""Get appropriate filepath for worker.
"""Get appropriate filepath for worker.
Args:
Args:
...
@@ -377,7 +377,7 @@ def _get_filepath(strategy, filepath):
...
@@ -377,7 +377,7 @@ def _get_filepath(strategy, filepath):
return
os
.
path
.
join
(
filepath
,
'temp_worker_{:03d}'
.
format
(
task_id
))
return
os
.
path
.
join
(
filepath
,
'temp_worker_{:03d}'
.
format
(
task_id
))
def
_
clean_temporary_directories
(
strategy
,
filepath
):
def
clean_temporary_directories
(
strategy
,
filepath
):
"""Temporary directory clean up for MultiWorker Mirrored Strategy.
"""Temporary directory clean up for MultiWorker Mirrored Strategy.
This is needed for all non-chief workers.
This is needed for all non-chief workers.
...
@@ -539,8 +539,8 @@ def train_loop(
...
@@ -539,8 +539,8 @@ def train_loop(
## Train the model
## Train the model
# Get the appropriate filepath (temporary or not) based on whether the worker
# Get the appropriate filepath (temporary or not) based on whether the worker
# is the chief.
# is the chief.
summary_writer_filepath
=
_
get_filepath
(
strategy
,
summary_writer_filepath
=
get_filepath
(
strategy
,
os
.
path
.
join
(
model_dir
,
'train'
))
os
.
path
.
join
(
model_dir
,
'train'
))
summary_writer
=
tf
.
compat
.
v2
.
summary
.
create_file_writer
(
summary_writer
=
tf
.
compat
.
v2
.
summary
.
create_file_writer
(
summary_writer_filepath
)
summary_writer_filepath
)
...
@@ -567,7 +567,7 @@ def train_loop(
...
@@ -567,7 +567,7 @@ def train_loop(
ckpt
=
tf
.
compat
.
v2
.
train
.
Checkpoint
(
ckpt
=
tf
.
compat
.
v2
.
train
.
Checkpoint
(
step
=
global_step
,
model
=
detection_model
,
optimizer
=
optimizer
)
step
=
global_step
,
model
=
detection_model
,
optimizer
=
optimizer
)
manager_dir
=
_
get_filepath
(
strategy
,
model_dir
)
manager_dir
=
get_filepath
(
strategy
,
model_dir
)
if
not
strategy
.
extended
.
should_checkpoint
:
if
not
strategy
.
extended
.
should_checkpoint
:
checkpoint_max_to_keep
=
1
checkpoint_max_to_keep
=
1
manager
=
tf
.
compat
.
v2
.
train
.
CheckpointManager
(
manager
=
tf
.
compat
.
v2
.
train
.
CheckpointManager
(
...
@@ -615,6 +615,10 @@ def train_loop(
...
@@ -615,6 +615,10 @@ def train_loop(
return
_sample_and_train
(
strategy
,
train_step_fn
,
data_iterator
)
return
_sample_and_train
(
strategy
,
train_step_fn
,
data_iterator
)
train_input_iter
=
iter
(
train_input
)
train_input_iter
=
iter
(
train_input
)
if
int
(
global_step
.
value
())
==
0
:
manager
.
save
()
checkpointed_step
=
int
(
global_step
.
value
())
checkpointed_step
=
int
(
global_step
.
value
())
logged_step
=
global_step
.
value
()
logged_step
=
global_step
.
value
()
...
@@ -646,8 +650,8 @@ def train_loop(
...
@@ -646,8 +650,8 @@ def train_loop(
# Remove the checkpoint directories of the non-chief workers that
# Remove the checkpoint directories of the non-chief workers that
# MultiWorkerMirroredStrategy forces us to save during sync distributed
# MultiWorkerMirroredStrategy forces us to save during sync distributed
# training.
# training.
_
clean_temporary_directories
(
strategy
,
manager_dir
)
clean_temporary_directories
(
strategy
,
manager_dir
)
_
clean_temporary_directories
(
strategy
,
summary_writer_filepath
)
clean_temporary_directories
(
strategy
,
summary_writer_filepath
)
def
eager_eval_loop
(
def
eager_eval_loop
(
...
...
research/object_detection/model_main_tf2.py
0 → 100644
View file @
b1025b3b
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r
"""Creates and runs TF2 object detection models.
##################################
NOTE: This module has not been fully tested; please bear with us while we iron
out the kinks.
##################################
When a TPU device is available, this binary uses TPUStrategy. Otherwise, it uses
GPUS with MirroredStrategy/MultiWorkerMirroredStrategy.
For local training/evaluation run:
PIPELINE_CONFIG_PATH=path/to/pipeline.config
MODEL_DIR=/tmp/model_outputs
NUM_TRAIN_STEPS=10000
SAMPLE_1_OF_N_EVAL_EXAMPLES=1
python model_main_tf2.py -- \
--model_dir=$MODEL_DIR --num_train_steps=$NUM_TRAIN_STEPS \
--sample_1_of_n_eval_examples=$SAMPLE_1_OF_N_EVAL_EXAMPLES \
--pipeline_config_path=$PIPELINE_CONFIG_PATH \
--alsologtostderr
"""
from
absl
import
flags
import
tensorflow.compat.v2
as
tf
from
object_detection
import
model_hparams
from
object_detection
import
model_lib_v2
flags
.
DEFINE_string
(
'pipeline_config_path'
,
None
,
'Path to pipeline config '
'file.'
)
flags
.
DEFINE_integer
(
'num_train_steps'
,
None
,
'Number of train steps.'
)
flags
.
DEFINE_bool
(
'eval_on_train_data'
,
False
,
'Enable evaluating on train '
'data (only supported in distributed training).'
)
flags
.
DEFINE_integer
(
'sample_1_of_n_eval_examples'
,
None
,
'Will sample one of '
'every n eval input examples, where n is provided.'
)
flags
.
DEFINE_integer
(
'sample_1_of_n_eval_on_train_examples'
,
5
,
'Will sample '
'one of every n train input examples for evaluation, '
'where n is provided. This is only used if '
'`eval_training_data` is True.'
)
flags
.
DEFINE_string
(
'hparams_overrides'
,
None
,
'Hyperparameter overrides, '
'represented as a string containing comma-separated '
'hparam_name=value pairs.'
)
flags
.
DEFINE_string
(
'model_dir'
,
None
,
'Path to output model directory '
'where event and checkpoint files will be written.'
)
flags
.
DEFINE_string
(
'checkpoint_dir'
,
None
,
'Path to directory holding a checkpoint. If '
'`checkpoint_dir` is provided, this binary operates in eval-only mode, '
'writing resulting metrics to `model_dir`.'
)
flags
.
DEFINE_integer
(
'eval_timeout'
,
3600
,
'Number of seconds to wait for an'
'evaluation checkpoint before exiting.'
)
flags
.
DEFINE_integer
(
'num_workers'
,
1
,
'When num_workers > 1, training uses '
'MultiWorkerMirroredStrategy. When num_workers = 1 it uses '
'MirroredStrategy.'
)
FLAGS
=
flags
.
FLAGS
def
main
(
unused_argv
):
flags
.
mark_flag_as_required
(
'model_dir'
)
flags
.
mark_flag_as_required
(
'pipeline_config_path'
)
tf
.
config
.
set_soft_device_placement
(
True
)
if
FLAGS
.
checkpoint_dir
:
model_lib_v2
.
eval_continuously
(
hparams
=
model_hparams
.
create_hparams
(
FLAGS
.
hparams_overrides
),
pipeline_config_path
=
FLAGS
.
pipeline_config_path
,
model_dir
=
FLAGS
.
model_dir
,
train_steps
=
FLAGS
.
num_train_steps
,
sample_1_of_n_eval_examples
=
FLAGS
.
sample_1_of_n_eval_examples
,
sample_1_of_n_eval_on_train_examples
=
(
FLAGS
.
sample_1_of_n_eval_on_train_examples
),
checkpoint_dir
=
FLAGS
.
checkpoint_dir
,
wait_interval
=
300
,
timeout
=
FLAGS
.
eval_timeout
)
else
:
if
tf
.
config
.
get_visible_devices
(
'TPU'
):
resolver
=
tf
.
distribute
.
cluster_resolver
.
TPUClusterResolver
()
tf
.
config
.
experimental_connect_to_cluster
(
resolver
)
tf
.
tpu
.
experimental
.
initialize_tpu_system
(
resolver
)
strategy
=
tf
.
distribute
.
experimental
.
TPUStrategy
(
resolver
)
elif
FLAGS
.
num_workers
>
1
:
strategy
=
tf
.
distribute
.
experimental
.
MultiWorkerMirroredStrategy
()
else
:
strategy
=
tf
.
compat
.
v2
.
distribute
.
MirroredStrategy
()
with
strategy
.
scope
():
model_lib_v2
.
train_loop
(
hparams
=
model_hparams
.
create_hparams
(
FLAGS
.
hparams_overrides
),
pipeline_config_path
=
FLAGS
.
pipeline_config_path
,
model_dir
=
FLAGS
.
model_dir
,
train_steps
=
FLAGS
.
num_train_steps
,
use_tpu
=
FLAGS
.
use_tpu
)
if
__name__
==
'__main__'
:
tf
.
app
.
run
()
research/object_detection/models/center_net_hourglass_feature_extractor.py
0 → 100644
View file @
b1025b3b
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hourglass[1] feature extractor for CenterNet[2] meta architecture.
[1]: https://arxiv.org/abs/1603.06937
[2]: https://arxiv.org/abs/1904.07850
"""
from
object_detection.meta_architectures
import
center_net_meta_arch
from
object_detection.models.keras_models
import
hourglass_network
class
CenterNetHourglassFeatureExtractor
(
center_net_meta_arch
.
CenterNetFeatureExtractor
):
"""The hourglass feature extractor for CenterNet.
This class is a thin wrapper around the HourglassFeatureExtractor class
along with some preprocessing methods inherited from the base class.
"""
def
__init__
(
self
,
hourglass_net
,
channel_means
=
(
0.
,
0.
,
0.
),
channel_stds
=
(
1.
,
1.
,
1.
),
bgr_ordering
=
False
):
"""Intializes the feature extractor.
Args:
hourglass_net: The underlying hourglass network to use.
channel_means: A tuple of floats, denoting the mean of each channel
which will be subtracted from it.
channel_stds: A tuple of floats, denoting the standard deviation of each
channel. Each channel will be divided by its standard deviation value.
bgr_ordering: bool, if set will change the channel ordering to be in the
[blue, red, green] order.
"""
super
(
CenterNetHourglassFeatureExtractor
,
self
).
__init__
(
channel_means
=
channel_means
,
channel_stds
=
channel_stds
,
bgr_ordering
=
bgr_ordering
)
self
.
_network
=
hourglass_net
def
call
(
self
,
inputs
):
return
self
.
_network
(
inputs
)
@
property
def
out_stride
(
self
):
"""The stride in the output image of the network."""
return
4
@
property
def
num_feature_outputs
(
self
):
"""Ther number of feature outputs returned by the feature extractor."""
return
self
.
_network
.
num_hourglasses
def
get_model
(
self
):
return
self
.
_network
def
hourglass_104
(
channel_means
,
channel_stds
,
bgr_ordering
):
"""The Hourglass-104 backbone for CenterNet."""
network
=
hourglass_network
.
hourglass_104
()
return
CenterNetHourglassFeatureExtractor
(
network
,
channel_means
=
channel_means
,
channel_stds
=
channel_stds
,
bgr_ordering
=
bgr_ordering
)
research/object_detection/models/center_net_hourglass_feature_extractor_tf2_test.py
0 → 100644
View file @
b1025b3b
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Testing hourglass feature extractor for CenterNet."""
import
unittest
import
numpy
as
np
import
tensorflow.compat.v1
as
tf
from
object_detection.models
import
center_net_hourglass_feature_extractor
as
hourglass
from
object_detection.models.keras_models
import
hourglass_network
from
object_detection.utils
import
test_case
from
object_detection.utils
import
tf_version
@
unittest
.
skipIf
(
tf_version
.
is_tf1
(),
'Skipping TF2.X only test.'
)
class
CenterNetHourglassFeatureExtractorTest
(
test_case
.
TestCase
):
def
test_center_net_hourglass_feature_extractor
(
self
):
net
=
hourglass_network
.
HourglassNetwork
(
num_stages
=
4
,
blocks_per_stage
=
[
2
,
3
,
4
,
5
,
6
],
channel_dims
=
[
4
,
6
,
8
,
10
,
12
,
14
],
num_hourglasses
=
2
)
model
=
hourglass
.
CenterNetHourglassFeatureExtractor
(
net
)
def
graph_fn
():
return
model
(
tf
.
zeros
((
2
,
64
,
64
,
3
),
dtype
=
np
.
float32
))
outputs
=
self
.
execute
(
graph_fn
,
[])
self
.
assertEqual
(
outputs
[
0
].
shape
,
(
2
,
16
,
16
,
6
))
self
.
assertEqual
(
outputs
[
1
].
shape
,
(
2
,
16
,
16
,
6
))
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
research/object_detection/models/center_net_resnet_feature_extractor.py
0 → 100644
View file @
b1025b3b
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Resnetv2 based feature extractors for CenterNet[1] meta architecture.
[1]: https://arxiv.org/abs/1904.07850
"""
import
tensorflow.compat.v1
as
tf
from
object_detection.meta_architectures.center_net_meta_arch
import
CenterNetFeatureExtractor
class
CenterNetResnetFeatureExtractor
(
CenterNetFeatureExtractor
):
"""Resnet v2 base feature extractor for the CenterNet model."""
def
__init__
(
self
,
resnet_type
,
channel_means
=
(
0.
,
0.
,
0.
),
channel_stds
=
(
1.
,
1.
,
1.
),
bgr_ordering
=
False
):
"""Initializes the feature extractor with a specific ResNet architecture.
Args:
resnet_type: A string specifying which kind of ResNet to use. Currently
only `resnet_v2_50` and `resnet_v2_101` are supported.
channel_means: A tuple of floats, denoting the mean of each channel
which will be subtracted from it.
channel_stds: A tuple of floats, denoting the standard deviation of each
channel. Each channel will be divided by its standard deviation value.
bgr_ordering: bool, if set will change the channel ordering to be in the
[blue, red, green] order.
"""
super
(
CenterNetResnetFeatureExtractor
,
self
).
__init__
(
channel_means
=
channel_means
,
channel_stds
=
channel_stds
,
bgr_ordering
=
bgr_ordering
)
if
resnet_type
==
'resnet_v2_101'
:
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet101V2
(
weights
=
None
)
output_layer
=
'conv5_block3_out'
elif
resnet_type
==
'resnet_v2_50'
:
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet50V2
(
weights
=
None
)
output_layer
=
'conv5_block3_out'
else
:
raise
ValueError
(
'Unknown Resnet Model {}'
.
format
(
resnet_type
))
output_layer
=
self
.
_base_model
.
get_layer
(
output_layer
)
self
.
_resnet_model
=
tf
.
keras
.
models
.
Model
(
inputs
=
self
.
_base_model
.
input
,
outputs
=
output_layer
.
output
)
resnet_output
=
self
.
_resnet_model
(
self
.
_base_model
.
input
)
for
num_filters
in
[
256
,
128
,
64
]:
# TODO(vighneshb) This section has a few differences from the paper
# Figure out how much of a performance impact they have.
# 1. We use a simple convolution instead of a deformable convolution
conv
=
tf
.
keras
.
layers
.
Conv2D
(
filters
=
num_filters
,
kernel_size
=
3
,
strides
=
1
,
padding
=
'same'
)
resnet_output
=
conv
(
resnet_output
)
resnet_output
=
tf
.
keras
.
layers
.
BatchNormalization
()(
resnet_output
)
resnet_output
=
tf
.
keras
.
layers
.
ReLU
()(
resnet_output
)
# 2. We use the default initialization for the convolution layers
# instead of initializing it to do bilinear upsampling.
conv_transpose
=
tf
.
keras
.
layers
.
Conv2DTranspose
(
filters
=
num_filters
,
kernel_size
=
3
,
strides
=
2
,
padding
=
'same'
)
resnet_output
=
conv_transpose
(
resnet_output
)
resnet_output
=
tf
.
keras
.
layers
.
BatchNormalization
()(
resnet_output
)
resnet_output
=
tf
.
keras
.
layers
.
ReLU
()(
resnet_output
)
self
.
_feature_extractor_model
=
tf
.
keras
.
models
.
Model
(
inputs
=
self
.
_base_model
.
input
,
outputs
=
resnet_output
)
def
preprocess
(
self
,
resized_inputs
):
"""Preprocess input images for the ResNet model.
This scales images in the range [0, 255] to the range [-1, 1]
Args:
resized_inputs: a [batch, height, width, channels] float32 tensor.
Returns:
outputs: a [batch, height, width, channels] float32 tensor.
"""
resized_inputs
=
super
(
CenterNetResnetFeatureExtractor
,
self
).
preprocess
(
resized_inputs
)
return
tf
.
keras
.
applications
.
resnet_v2
.
preprocess_input
(
resized_inputs
)
def
load_feature_extractor_weights
(
self
,
path
):
self
.
_base_model
.
load_weights
(
path
)
def
get_base_model
(
self
):
"""Get base resnet model for inspection and testing."""
return
self
.
_base_model
def
call
(
self
,
inputs
):
"""Returns image features extracted by the backbone.
Args:
inputs: An image tensor of shape [batch_size, input_height,
input_width, 3]
Returns:
features_list: A list of length 1 containing a tensor of shape
[batch_size, input_height // 4, input_width // 4, 64] containing
the features extracted by the ResNet.
"""
return
[
self
.
_feature_extractor_model
(
inputs
)]
@
property
def
num_feature_outputs
(
self
):
return
1
@
property
def
out_stride
(
self
):
return
4
def
resnet_v2_101
(
channel_means
,
channel_stds
,
bgr_ordering
):
"""The ResNet v2 101 feature extractor."""
return
CenterNetResnetFeatureExtractor
(
resnet_type
=
'resnet_v2_101'
,
channel_means
=
channel_means
,
channel_stds
=
channel_stds
,
bgr_ordering
=
bgr_ordering
)
def
resnet_v2_50
(
channel_means
,
channel_stds
,
bgr_ordering
):
"""The ResNet v2 50 feature extractor."""
return
CenterNetResnetFeatureExtractor
(
resnet_type
=
'resnet_v2_50'
,
channel_means
=
channel_means
,
channel_stds
=
channel_stds
,
bgr_ordering
=
bgr_ordering
)
research/object_detection/models/center_net_resnet_feature_extractor_tf2_test.py
0 → 100644
View file @
b1025b3b
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Testing ResNet v2 models for the CenterNet meta architecture."""
import
unittest
import
numpy
as
np
import
tensorflow.compat.v1
as
tf
from
object_detection.models
import
center_net_resnet_feature_extractor
from
object_detection.utils
import
test_case
from
object_detection.utils
import
tf_version
@
unittest
.
skipIf
(
tf_version
.
is_tf1
(),
'Skipping TF2.X only test.'
)
class
CenterNetResnetFeatureExtractorTest
(
test_case
.
TestCase
):
def
test_output_size
(
self
):
"""Verify that shape of features returned by the backbone is correct."""
model
=
center_net_resnet_feature_extractor
.
\
CenterNetResnetFeatureExtractor
(
'resnet_v2_101'
)
def
graph_fn
():
img
=
np
.
zeros
((
8
,
224
,
224
,
3
),
dtype
=
np
.
float32
)
processed_img
=
model
.
preprocess
(
img
)
return
model
(
processed_img
)
outputs
=
self
.
execute
(
graph_fn
,
[])
self
.
assertEqual
(
outputs
.
shape
,
(
8
,
56
,
56
,
64
))
def
test_output_size_resnet50
(
self
):
"""Verify that shape of features returned by the backbone is correct."""
model
=
center_net_resnet_feature_extractor
.
\
CenterNetResnetFeatureExtractor
(
'resnet_v2_50'
)
def
graph_fn
():
img
=
np
.
zeros
((
8
,
224
,
224
,
3
),
dtype
=
np
.
float32
)
processed_img
=
model
.
preprocess
(
img
)
return
model
(
processed_img
)
outputs
=
self
.
execute
(
graph_fn
,
[])
self
.
assertEqual
(
outputs
.
shape
,
(
8
,
56
,
56
,
64
))
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
research/object_detection/models/center_net_resnet_v1_fpn_feature_extractor.py
0 → 100644
View file @
b1025b3b
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Resnetv1 FPN [1] based feature extractors for CenterNet[2] meta architecture.
[1]: https://arxiv.org/abs/1612.03144.
[2]: https://arxiv.org/abs/1904.07850.
"""
import
tensorflow.compat.v1
as
tf
from
object_detection.meta_architectures.center_net_meta_arch
import
CenterNetFeatureExtractor
_RESNET_MODEL_OUTPUT_LAYERS
=
{
'resnet_v1_50'
:
[
'conv2_block3_out'
,
'conv3_block4_out'
,
'conv4_block6_out'
,
'conv5_block3_out'
],
'resnet_v1_101'
:
[
'conv2_block3_out'
,
'conv3_block4_out'
,
'conv4_block23_out'
,
'conv5_block3_out'
],
}
class
CenterNetResnetV1FpnFeatureExtractor
(
CenterNetFeatureExtractor
):
"""Resnet v1 FPN base feature extractor for the CenterNet model.
This feature extractor uses residual skip connections and nearest neighbor
upsampling to produce an output feature map of stride 4, which has precise
localization information along with strong semantic information from the top
of the net. This design does not exactly follow the original FPN design,
specifically:
- Since only one output map is necessary for heatmap prediction (stride 4
output), the top-down feature maps can have different numbers of channels.
Specifically, the top down feature maps have the following sizes:
[h/4, w/4, 64], [h/8, w/8, 128], [h/16, w/16, 256], [h/32, w/32, 256].
- No additional coarse features are used after conv5_x.
"""
def
__init__
(
self
,
resnet_type
,
channel_means
=
(
0.
,
0.
,
0.
),
channel_stds
=
(
1.
,
1.
,
1.
),
bgr_ordering
=
False
):
"""Initializes the feature extractor with a specific ResNet architecture.
Args:
resnet_type: A string specifying which kind of ResNet to use. Currently
only `resnet_v1_50` and `resnet_v1_101` are supported.
channel_means: A tuple of floats, denoting the mean of each channel
which will be subtracted from it.
channel_stds: A tuple of floats, denoting the standard deviation of each
channel. Each channel will be divided by its standard deviation value.
bgr_ordering: bool, if set will change the channel ordering to be in the
[blue, red, green] order.
"""
super
(
CenterNetResnetV1FpnFeatureExtractor
,
self
).
__init__
(
channel_means
=
channel_means
,
channel_stds
=
channel_stds
,
bgr_ordering
=
bgr_ordering
)
if
resnet_type
==
'resnet_v1_50'
:
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet50
(
weights
=
None
)
elif
resnet_type
==
'resnet_v1_101'
:
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet101
(
weights
=
None
)
else
:
raise
ValueError
(
'Unknown Resnet Model {}'
.
format
(
resnet_type
))
output_layers
=
_RESNET_MODEL_OUTPUT_LAYERS
[
resnet_type
]
outputs
=
[
self
.
_base_model
.
get_layer
(
output_layer_name
).
output
for
output_layer_name
in
output_layers
]
self
.
_resnet_model
=
tf
.
keras
.
models
.
Model
(
inputs
=
self
.
_base_model
.
input
,
outputs
=
outputs
)
resnet_outputs
=
self
.
_resnet_model
(
self
.
_base_model
.
input
)
# Construct the top-down feature maps.
top_layer
=
resnet_outputs
[
-
1
]
residual_op
=
tf
.
keras
.
layers
.
Conv2D
(
filters
=
256
,
kernel_size
=
1
,
strides
=
1
,
padding
=
'same'
)
top_down
=
residual_op
(
top_layer
)
num_filters_list
=
[
256
,
128
,
64
]
for
i
,
num_filters
in
enumerate
(
num_filters_list
):
level_ind
=
2
-
i
# Upsample.
upsample_op
=
tf
.
keras
.
layers
.
UpSampling2D
(
2
,
interpolation
=
'nearest'
)
top_down
=
upsample_op
(
top_down
)
# Residual (skip-connection) from bottom-up pathway.
residual_op
=
tf
.
keras
.
layers
.
Conv2D
(
filters
=
num_filters
,
kernel_size
=
1
,
strides
=
1
,
padding
=
'same'
)
residual
=
residual_op
(
resnet_outputs
[
level_ind
])
# Merge.
top_down
=
top_down
+
residual
next_num_filters
=
num_filters_list
[
i
+
1
]
if
i
+
1
<=
2
else
64
conv
=
tf
.
keras
.
layers
.
Conv2D
(
filters
=
next_num_filters
,
kernel_size
=
3
,
strides
=
1
,
padding
=
'same'
)
top_down
=
conv
(
top_down
)
top_down
=
tf
.
keras
.
layers
.
BatchNormalization
()(
top_down
)
top_down
=
tf
.
keras
.
layers
.
ReLU
()(
top_down
)
self
.
_feature_extractor_model
=
tf
.
keras
.
models
.
Model
(
inputs
=
self
.
_base_model
.
input
,
outputs
=
top_down
)
def
preprocess
(
self
,
resized_inputs
):
"""Preprocess input images for the ResNet model.
This scales images in the range [0, 255] to the range [-1, 1]
Args:
resized_inputs: a [batch, height, width, channels] float32 tensor.
Returns:
outputs: a [batch, height, width, channels] float32 tensor.
"""
resized_inputs
=
super
(
CenterNetResnetV1FpnFeatureExtractor
,
self
).
preprocess
(
resized_inputs
)
return
tf
.
keras
.
applications
.
resnet
.
preprocess_input
(
resized_inputs
)
def
load_feature_extractor_weights
(
self
,
path
):
self
.
_base_model
.
load_weights
(
path
)
def
get_base_model
(
self
):
"""Get base resnet model for inspection and testing."""
return
self
.
_base_model
def
call
(
self
,
inputs
):
"""Returns image features extracted by the backbone.
Args:
inputs: An image tensor of shape [batch_size, input_height,
input_width, 3]
Returns:
features_list: A list of length 1 containing a tensor of shape
[batch_size, input_height // 4, input_width // 4, 64] containing
the features extracted by the ResNet.
"""
return
[
self
.
_feature_extractor_model
(
inputs
)]
@
property
def
num_feature_outputs
(
self
):
return
1
@
property
def
out_stride
(
self
):
return
4
def
resnet_v1_101_fpn
(
channel_means
,
channel_stds
,
bgr_ordering
):
"""The ResNet v1 101 FPN feature extractor."""
return
CenterNetResnetV1FpnFeatureExtractor
(
resnet_type
=
'resnet_v1_101'
,
channel_means
=
channel_means
,
channel_stds
=
channel_stds
,
bgr_ordering
=
bgr_ordering
)
def
resnet_v1_50_fpn
(
channel_means
,
channel_stds
,
bgr_ordering
):
"""The ResNet v1 50 FPN feature extractor."""
return
CenterNetResnetV1FpnFeatureExtractor
(
resnet_type
=
'resnet_v1_50'
,
channel_means
=
channel_means
,
channel_stds
=
channel_stds
,
bgr_ordering
=
bgr_ordering
)
research/object_detection/models/center_net_resnet_v1_fpn_feature_extractor_tf2_test.py
0 → 100644
View file @
b1025b3b
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Testing ResNet v1 FPN models for the CenterNet meta architecture."""
import
unittest
from
absl.testing
import
parameterized
import
numpy
as
np
import
tensorflow.compat.v1
as
tf
from
object_detection.models
import
center_net_resnet_v1_fpn_feature_extractor
from
object_detection.utils
import
test_case
from
object_detection.utils
import
tf_version
@
unittest
.
skipIf
(
tf_version
.
is_tf1
(),
'Skipping TF2.X only test.'
)
class
CenterNetResnetV1FpnFeatureExtractorTest
(
test_case
.
TestCase
,
parameterized
.
TestCase
):
@
parameterized
.
parameters
(
{
'resnet_type'
:
'resnet_v1_50'
},
{
'resnet_type'
:
'resnet_v1_101'
},
)
def
test_correct_output_size
(
self
,
resnet_type
):
"""Verify that shape of features returned by the backbone is correct."""
model
=
center_net_resnet_v1_fpn_feature_extractor
.
\
CenterNetResnetV1FpnFeatureExtractor
(
resnet_type
)
def
graph_fn
():
img
=
np
.
zeros
((
8
,
224
,
224
,
3
),
dtype
=
np
.
float32
)
processed_img
=
model
.
preprocess
(
img
)
return
model
(
processed_img
)
self
.
assertEqual
(
self
.
execute
(
graph_fn
,
[]).
shape
,
(
8
,
56
,
56
,
64
))
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
research/object_detection/models/embedded_ssd_mobilenet_v1_feature_extractor_test.py
→
research/object_detection/models/embedded_ssd_mobilenet_v1_feature_extractor_
tf1_
test.py
View file @
b1025b3b
...
@@ -14,13 +14,16 @@
...
@@ -14,13 +14,16 @@
# ==============================================================================
# ==============================================================================
"""Tests for embedded_ssd_mobilenet_v1_feature_extractor."""
"""Tests for embedded_ssd_mobilenet_v1_feature_extractor."""
import
unittest
import
numpy
as
np
import
numpy
as
np
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
from
object_detection.models
import
embedded_ssd_mobilenet_v1_feature_extractor
from
object_detection.models
import
embedded_ssd_mobilenet_v1_feature_extractor
from
object_detection.models
import
ssd_feature_extractor_test
from
object_detection.models
import
ssd_feature_extractor_test
from
object_detection.utils
import
tf_version
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Skipping TF1.X only test.'
)
class
EmbeddedSSDMobileNetV1FeatureExtractorTest
(
class
EmbeddedSSDMobileNetV1FeatureExtractorTest
(
ssd_feature_extractor_test
.
SsdFeatureExtractorTestBase
):
ssd_feature_extractor_test
.
SsdFeatureExtractorTestBase
):
...
...
research/object_detection/models/faster_rcnn_inception_resnet_v2_feature_extractor_test.py
→
research/object_detection/models/faster_rcnn_inception_resnet_v2_feature_extractor_
tf1_
test.py
View file @
b1025b3b
...
@@ -14,12 +14,14 @@
...
@@ -14,12 +14,14 @@
# ==============================================================================
# ==============================================================================
"""Tests for models.faster_rcnn_inception_resnet_v2_feature_extractor."""
"""Tests for models.faster_rcnn_inception_resnet_v2_feature_extractor."""
import
unittest
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
from
object_detection.models
import
faster_rcnn_inception_resnet_v2_feature_extractor
as
frcnn_inc_res
from
object_detection.models
import
faster_rcnn_inception_resnet_v2_feature_extractor
as
frcnn_inc_res
from
object_detection.utils
import
tf_version
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Skipping TF1.X only test.'
)
class
FasterRcnnInceptionResnetV2FeatureExtractorTest
(
tf
.
test
.
TestCase
):
class
FasterRcnnInceptionResnetV2FeatureExtractorTest
(
tf
.
test
.
TestCase
):
def
_build_feature_extractor
(
self
,
first_stage_features_stride
):
def
_build_feature_extractor
(
self
,
first_stage_features_stride
):
...
...
research/object_detection/models/faster_rcnn_inception_resnet_v2_keras_feature_extractor_test.py
→
research/object_detection/models/faster_rcnn_inception_resnet_v2_keras_feature_extractor_
tf2_
test.py
View file @
b1025b3b
...
@@ -14,12 +14,14 @@
...
@@ -14,12 +14,14 @@
# ==============================================================================
# ==============================================================================
"""Tests for models.faster_rcnn_inception_resnet_v2_keras_feature_extractor."""
"""Tests for models.faster_rcnn_inception_resnet_v2_keras_feature_extractor."""
import
unittest
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
from
object_detection.models
import
faster_rcnn_inception_resnet_v2_keras_feature_extractor
as
frcnn_inc_res
from
object_detection.models
import
faster_rcnn_inception_resnet_v2_keras_feature_extractor
as
frcnn_inc_res
from
object_detection.utils
import
tf_version
@
unittest
.
skipIf
(
tf_version
.
is_tf1
(),
'Skipping TF2.X only test.'
)
class
FasterRcnnInceptionResnetV2KerasFeatureExtractorTest
(
tf
.
test
.
TestCase
):
class
FasterRcnnInceptionResnetV2KerasFeatureExtractorTest
(
tf
.
test
.
TestCase
):
def
_build_feature_extractor
(
self
,
first_stage_features_stride
):
def
_build_feature_extractor
(
self
,
first_stage_features_stride
):
...
@@ -38,11 +40,7 @@ class FasterRcnnInceptionResnetV2KerasFeatureExtractorTest(tf.test.TestCase):
...
@@ -38,11 +40,7 @@ class FasterRcnnInceptionResnetV2KerasFeatureExtractorTest(tf.test.TestCase):
name
=
'TestScope'
)(
preprocessed_inputs
)
name
=
'TestScope'
)(
preprocessed_inputs
)
features_shape
=
tf
.
shape
(
rpn_feature_map
)
features_shape
=
tf
.
shape
(
rpn_feature_map
)
init_op
=
tf
.
global_variables_initializer
()
self
.
assertAllEqual
(
features_shape
.
numpy
(),
[
1
,
19
,
19
,
1088
])
with
self
.
test_session
()
as
sess
:
sess
.
run
(
init_op
)
features_shape_out
=
sess
.
run
(
features_shape
)
self
.
assertAllEqual
(
features_shape_out
,
[
1
,
19
,
19
,
1088
])
def
test_extract_proposal_features_stride_eight
(
self
):
def
test_extract_proposal_features_stride_eight
(
self
):
feature_extractor
=
self
.
_build_feature_extractor
(
feature_extractor
=
self
.
_build_feature_extractor
(
...
@@ -53,11 +51,7 @@ class FasterRcnnInceptionResnetV2KerasFeatureExtractorTest(tf.test.TestCase):
...
@@ -53,11 +51,7 @@ class FasterRcnnInceptionResnetV2KerasFeatureExtractorTest(tf.test.TestCase):
name
=
'TestScope'
)(
preprocessed_inputs
)
name
=
'TestScope'
)(
preprocessed_inputs
)
features_shape
=
tf
.
shape
(
rpn_feature_map
)
features_shape
=
tf
.
shape
(
rpn_feature_map
)
init_op
=
tf
.
global_variables_initializer
()
self
.
assertAllEqual
(
features_shape
.
numpy
(),
[
1
,
28
,
28
,
1088
])
with
self
.
test_session
()
as
sess
:
sess
.
run
(
init_op
)
features_shape_out
=
sess
.
run
(
features_shape
)
self
.
assertAllEqual
(
features_shape_out
,
[
1
,
28
,
28
,
1088
])
def
test_extract_proposal_features_half_size_input
(
self
):
def
test_extract_proposal_features_half_size_input
(
self
):
feature_extractor
=
self
.
_build_feature_extractor
(
feature_extractor
=
self
.
_build_feature_extractor
(
...
@@ -67,25 +61,7 @@ class FasterRcnnInceptionResnetV2KerasFeatureExtractorTest(tf.test.TestCase):
...
@@ -67,25 +61,7 @@ class FasterRcnnInceptionResnetV2KerasFeatureExtractorTest(tf.test.TestCase):
rpn_feature_map
=
feature_extractor
.
get_proposal_feature_extractor_model
(
rpn_feature_map
=
feature_extractor
.
get_proposal_feature_extractor_model
(
name
=
'TestScope'
)(
preprocessed_inputs
)
name
=
'TestScope'
)(
preprocessed_inputs
)
features_shape
=
tf
.
shape
(
rpn_feature_map
)
features_shape
=
tf
.
shape
(
rpn_feature_map
)
self
.
assertAllEqual
(
features_shape
.
numpy
(),
[
1
,
7
,
7
,
1088
])
init_op
=
tf
.
global_variables_initializer
()
with
self
.
test_session
()
as
sess
:
sess
.
run
(
init_op
)
features_shape_out
=
sess
.
run
(
features_shape
)
self
.
assertAllEqual
(
features_shape_out
,
[
1
,
7
,
7
,
1088
])
def
test_extract_proposal_features_dies_on_invalid_stride
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
_build_feature_extractor
(
first_stage_features_stride
=
99
)
def
test_extract_proposal_features_dies_with_incorrect_rank_inputs
(
self
):
feature_extractor
=
self
.
_build_feature_extractor
(
first_stage_features_stride
=
16
)
preprocessed_inputs
=
tf
.
random_uniform
(
[
224
,
224
,
3
],
maxval
=
255
,
dtype
=
tf
.
float32
)
with
self
.
assertRaises
(
ValueError
):
feature_extractor
.
get_proposal_feature_extractor_model
(
name
=
'TestScope'
)(
preprocessed_inputs
)
def
test_extract_box_classifier_features_returns_expected_size
(
self
):
def
test_extract_box_classifier_features_returns_expected_size
(
self
):
feature_extractor
=
self
.
_build_feature_extractor
(
feature_extractor
=
self
.
_build_feature_extractor
(
...
@@ -97,12 +73,7 @@ class FasterRcnnInceptionResnetV2KerasFeatureExtractorTest(tf.test.TestCase):
...
@@ -97,12 +73,7 @@ class FasterRcnnInceptionResnetV2KerasFeatureExtractorTest(tf.test.TestCase):
proposal_classifier_features
=
(
proposal_classifier_features
=
(
model
(
proposal_feature_maps
))
model
(
proposal_feature_maps
))
features_shape
=
tf
.
shape
(
proposal_classifier_features
)
features_shape
=
tf
.
shape
(
proposal_classifier_features
)
self
.
assertAllEqual
(
features_shape
.
numpy
(),
[
2
,
8
,
8
,
1536
])
init_op
=
tf
.
global_variables_initializer
()
with
self
.
test_session
()
as
sess
:
sess
.
run
(
init_op
)
features_shape_out
=
sess
.
run
(
features_shape
)
self
.
assertAllEqual
(
features_shape_out
,
[
2
,
8
,
8
,
1536
])
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
research/object_detection/models/faster_rcnn_inception_v2_feature_extractor_test.py
→
research/object_detection/models/faster_rcnn_inception_v2_feature_extractor_
tf1_
test.py
View file @
b1025b3b
...
@@ -14,13 +14,15 @@
...
@@ -14,13 +14,15 @@
# ==============================================================================
# ==============================================================================
"""Tests for faster_rcnn_inception_v2_feature_extractor."""
"""Tests for faster_rcnn_inception_v2_feature_extractor."""
import
unittest
import
numpy
as
np
import
numpy
as
np
import
tensorflow.compat.v1
as
tf
import
tensorflow.compat.v1
as
tf
from
object_detection.models
import
faster_rcnn_inception_v2_feature_extractor
as
faster_rcnn_inception_v2
from
object_detection.models
import
faster_rcnn_inception_v2_feature_extractor
as
faster_rcnn_inception_v2
from
object_detection.utils
import
tf_version
@
unittest
.
skipIf
(
tf_version
.
is_tf2
(),
'Skipping TF1.X only test.'
)
class
FasterRcnnInceptionV2FeatureExtractorTest
(
tf
.
test
.
TestCase
):
class
FasterRcnnInceptionV2FeatureExtractorTest
(
tf
.
test
.
TestCase
):
def
_build_feature_extractor
(
self
,
first_stage_features_stride
):
def
_build_feature_extractor
(
self
,
first_stage_features_stride
):
...
...
Prev
1
2
3
4
5
6
7
8
9
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment