@@ -10,7 +10,7 @@ Transformer-based encoder as described in ["BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding"](https://arxiv.org/abs/1810.04805). It includes the embedding lookups,
transformer layers and pooling layer.
*[`AlbertTransformerEncoder`](albert_transformer_encoder.py) implements a
*[`AlbertEncoder`](albert_encoder.py) implements a
Transformer-encoder described in the paper ["ALBERT: A Lite BERT for
Self-supervised Learning of Language Representations"]
(https://arxiv.org/abs/1909.11942). Compared with [BERT](https://arxiv.org/abs/1810.04805), ALBERT refactorizes embedding parameters
...
...
@@ -26,3 +26,4 @@ to 1) head.
*[`SpanLabeling`](span_labeling.py) implements a single-span labeler (that is, a prediction head that can predict one start and end index per batch item) based on a single dense hidden layer. It can be used in the SQuAD task.
*[`XLNetBase`](xlnet_base.py) implements the base network used in "XLNet: Generalized Autoregressive Pretraining for Language Understanding"(https://arxiv.org/abs/1906.08237). It includes embedding lookups, relative position encodings, mask computations, segment matrix computations and Transformer XL layers using one or two stream relative self-attention.