Commit ae0a9409 authored by cclauss's avatar cclauss
Browse files

Fix Python 3 Syntax Errors (en masse)

parent eb7c6e43
...@@ -23,11 +23,14 @@ $ python real_nvp_multiscale_dataset.py \ ...@@ -23,11 +23,14 @@ $ python real_nvp_multiscale_dataset.py \
--data_path [DATA_PATH] --data_path [DATA_PATH]
""" """
from __future__ import print_function
import time import time
from datetime import datetime from datetime import datetime
import os import os
import numpy import numpy
from six.moves import xrange
import tensorflow as tf import tensorflow as tf
from tensorflow import gfile from tensorflow import gfile
...@@ -1435,10 +1438,10 @@ class RealNVP(object): ...@@ -1435,10 +1438,10 @@ class RealNVP(object):
n_equal = int(n_equal) n_equal = int(n_equal)
n_dash = bar_len - n_equal n_dash = bar_len - n_equal
progress_bar = "[" + "=" * n_equal + "-" * n_dash + "]\r" progress_bar = "[" + "=" * n_equal + "-" * n_dash + "]\r"
print progress_bar, print(progress_bar, end=' ')
cost = self.bit_per_dim.eval() cost = self.bit_per_dim.eval()
eval_costs.append(cost) eval_costs.append(cost)
print "" print("")
return float(numpy.mean(eval_costs)) return float(numpy.mean(eval_costs))
...@@ -1467,7 +1470,7 @@ def train_model(hps, logdir): ...@@ -1467,7 +1470,7 @@ def train_model(hps, logdir):
ckpt_state = tf.train.get_checkpoint_state(logdir) ckpt_state = tf.train.get_checkpoint_state(logdir)
if ckpt_state and ckpt_state.model_checkpoint_path: if ckpt_state and ckpt_state.model_checkpoint_path:
print "Loading file %s" % ckpt_state.model_checkpoint_path print("Loading file %s" % ckpt_state.model_checkpoint_path)
saver.restore(sess, ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path)
# Start the queue runners. # Start the queue runners.
...@@ -1499,8 +1502,8 @@ def train_model(hps, logdir): ...@@ -1499,8 +1502,8 @@ def train_model(hps, logdir):
format_str = ('%s: step %d, loss = %.2f ' format_str = ('%s: step %d, loss = %.2f '
'(%.1f examples/sec; %.3f ' '(%.1f examples/sec; %.3f '
'sec/batch)') 'sec/batch)')
print format_str % (datetime.now(), global_step_val, loss, print(format_str % (datetime.now(), global_step_val, loss,
examples_per_sec, duration) examples_per_sec, duration))
if should_eval_summaries: if should_eval_summaries:
summary_str = outputs[-1] summary_str = outputs[-1]
...@@ -1542,24 +1545,24 @@ def evaluate(hps, logdir, traindir, subset="valid", return_val=False): ...@@ -1542,24 +1545,24 @@ def evaluate(hps, logdir, traindir, subset="valid", return_val=False):
while True: while True:
ckpt_state = tf.train.get_checkpoint_state(traindir) ckpt_state = tf.train.get_checkpoint_state(traindir)
if not (ckpt_state and ckpt_state.model_checkpoint_path): if not (ckpt_state and ckpt_state.model_checkpoint_path):
print "No model to eval yet at %s" % traindir print("No model to eval yet at %s" % traindir)
time.sleep(30) time.sleep(30)
continue continue
print "Loading file %s" % ckpt_state.model_checkpoint_path print("Loading file %s" % ckpt_state.model_checkpoint_path)
saver.restore(sess, ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path)
current_step = tf.train.global_step(sess, eval_model.step) current_step = tf.train.global_step(sess, eval_model.step)
if current_step == previous_global_step: if current_step == previous_global_step:
print "Waiting for the checkpoint to be updated." print("Waiting for the checkpoint to be updated.")
time.sleep(30) time.sleep(30)
continue continue
previous_global_step = current_step previous_global_step = current_step
print "Evaluating..." print("Evaluating...")
bit_per_dim = eval_model.eval_epoch(hps) bit_per_dim = eval_model.eval_epoch(hps)
print ("Epoch: %d, %s -> %.3f bits/dim" print("Epoch: %d, %s -> %.3f bits/dim"
% (current_step, subset, bit_per_dim)) % (current_step, subset, bit_per_dim))
print "Writing summary..." print("Writing summary...")
summary = tf.Summary() summary = tf.Summary()
summary.value.extend( summary.value.extend(
[tf.Summary.Value( [tf.Summary.Value(
...@@ -1597,7 +1600,7 @@ def sample_from_model(hps, logdir, traindir): ...@@ -1597,7 +1600,7 @@ def sample_from_model(hps, logdir, traindir):
ckpt_state = tf.train.get_checkpoint_state(traindir) ckpt_state = tf.train.get_checkpoint_state(traindir)
if not (ckpt_state and ckpt_state.model_checkpoint_path): if not (ckpt_state and ckpt_state.model_checkpoint_path):
if not initialized: if not initialized:
print "No model to eval yet at %s" % traindir print("No model to eval yet at %s" % traindir)
time.sleep(30) time.sleep(30)
continue continue
else: else:
...@@ -1607,7 +1610,7 @@ def sample_from_model(hps, logdir, traindir): ...@@ -1607,7 +1610,7 @@ def sample_from_model(hps, logdir, traindir):
current_step = tf.train.global_step(sess, eval_model.step) current_step = tf.train.global_step(sess, eval_model.step)
if current_step == previous_global_step: if current_step == previous_global_step:
print "Waiting for the checkpoint to be updated." print("Waiting for the checkpoint to be updated.")
time.sleep(30) time.sleep(30)
continue continue
previous_global_step = current_step previous_global_step = current_step
......
...@@ -14,6 +14,8 @@ ...@@ -14,6 +14,8 @@
# ============================================================================== # ==============================================================================
"""String network description language to define network layouts.""" """String network description language to define network layouts."""
from __future__ import print_function
import re import re
import time import time
...@@ -170,7 +172,7 @@ def Eval(train_dir, ...@@ -170,7 +172,7 @@ def Eval(train_dir,
_AddRateToSummary('Sequence error rate', rates.sequence_error, step, _AddRateToSummary('Sequence error rate', rates.sequence_error, step,
sw) sw)
sw.flush() sw.flush()
print 'Error rates=', rates print('Error rates=', rates)
else: else:
raise ValueError('Non-softmax decoder evaluation not implemented!') raise ValueError('Non-softmax decoder evaluation not implemented!')
if eval_interval_secs: if eval_interval_secs:
......
...@@ -61,6 +61,7 @@ import os ...@@ -61,6 +61,7 @@ import os
import struct import struct
import sys import sys
from six.moves import xrange
import tensorflow as tf import tensorflow as tf
flags = tf.app.flags flags = tf.app.flags
...@@ -118,7 +119,7 @@ def create_vocabulary(lines): ...@@ -118,7 +119,7 @@ def create_vocabulary(lines):
if not num_words: if not num_words:
raise Exception('empty vocabulary') raise Exception('empty vocabulary')
print 'vocabulary contains %d tokens' % num_words print('vocabulary contains %d tokens' % num_words)
vocab = vocab[:num_words] vocab = vocab[:num_words]
return [tok for tok, n in vocab] return [tok for tok, n in vocab]
...@@ -309,7 +310,7 @@ def main(_): ...@@ -309,7 +310,7 @@ def main(_):
write_vocab_and_sums(vocab, sums, 'row_vocab.txt', 'row_sums.txt') write_vocab_and_sums(vocab, sums, 'row_vocab.txt', 'row_sums.txt')
write_vocab_and_sums(vocab, sums, 'col_vocab.txt', 'col_sums.txt') write_vocab_and_sums(vocab, sums, 'col_vocab.txt', 'col_sums.txt')
print 'done!' print('done!')
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -49,7 +49,7 @@ import sys ...@@ -49,7 +49,7 @@ import sys
try: try:
opts, args = getopt( opts, args = getopt(
sys.argv[1:], 'o:v:', ['output=', 'vocab=']) sys.argv[1:], 'o:v:', ['output=', 'vocab='])
except GetoptError, e: except GetoptError as e:
print >> sys.stderr, e print >> sys.stderr, e
sys.exit(2) sys.exit(2)
......
...@@ -28,7 +28,7 @@ from syntaxnet.util import check ...@@ -28,7 +28,7 @@ from syntaxnet.util import check
try: try:
tf.NotDifferentiable('ExtractFixedFeatures') tf.NotDifferentiable('ExtractFixedFeatures')
except KeyError, e: except KeyError as e:
logging.info(str(e)) logging.info(str(e))
......
...@@ -88,12 +88,12 @@ def main(unused_argv): ...@@ -88,12 +88,12 @@ def main(unused_argv):
sentence.ParseFromString(d) sentence.ParseFromString(d)
tr = asciitree.LeftAligned() tr = asciitree.LeftAligned()
d = to_dict(sentence) d = to_dict(sentence)
print 'Input: %s' % sentence.text print('Input: %s' % sentence.text)
print 'Parse:' print('Parse:')
tr_str = tr(d) tr_str = tr(d)
pat = re.compile(r'\s*@\d+$') pat = re.compile(r'\s*@\d+$')
for tr_ln in tr_str.splitlines(): for tr_ln in tr_str.splitlines():
print pat.sub('', tr_ln) print(pat.sub('', tr_ln))
if finished: if finished:
break break
......
...@@ -76,9 +76,9 @@ def compute_average_alignment( ...@@ -76,9 +76,9 @@ def compute_average_alignment(
alignment = np.mean( alignment = np.mean(
np.abs(np.array(times_i)-np.array(times_j))/float(seq_len)) np.abs(np.array(times_i)-np.array(times_j))/float(seq_len))
all_alignments.append(alignment) all_alignments.append(alignment)
print 'alignment so far %f' % alignment print('alignment so far %f' % alignment)
average_alignment = np.mean(all_alignments) average_alignment = np.mean(all_alignments)
print 'Average alignment %f' % average_alignment print('Average alignment %f' % average_alignment)
summ = tf.Summary(value=[tf.Summary.Value( summ = tf.Summary(value=[tf.Summary.Value(
tag='validation/alignment', simple_value=average_alignment)]) tag='validation/alignment', simple_value=average_alignment)])
summary_writer.add_summary(summ, int(training_step)) summary_writer.add_summary(summ, int(training_step))
......
...@@ -58,6 +58,7 @@ matplotlib.use('TkAgg') ...@@ -58,6 +58,7 @@ matplotlib.use('TkAgg')
from matplotlib import animation # pylint: disable=g-import-not-at-top from matplotlib import animation # pylint: disable=g-import-not-at-top
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
from six.moves import input
import tensorflow as tf import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO) tf.logging.set_verbosity(tf.logging.INFO)
...@@ -438,7 +439,7 @@ def main(_): ...@@ -438,7 +439,7 @@ def main(_):
tf.logging.info('About to write to:') tf.logging.info('About to write to:')
for v in view_dirs: for v in view_dirs:
tf.logging.info(v) tf.logging.info(v)
raw_input('Press Enter to continue...') input('Press Enter to continue...')
except SyntaxError: except SyntaxError:
pass pass
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment