"docs/EN/git@developer.sourcefind.cn:Wenxuan/LightX2V.git" did not exist on "53e385051017e506fc680af9cfb76fa7331f21b4"
Commit ab5d4180 authored by Dan Holtmann-Rice's avatar Dan Holtmann-Rice Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 335446217
parent 6cf1e5a1
![TensorFlow Requirement: 2.x](https://img.shields.io/badge/TensorFlow%20Requirement-2.x-brightgreen)
# Orbit # Orbit
Orbit is a customized training loop library built on top of Tensorflow 2. It Orbit is a flexible, lightweight library designed to make it easy to write
provides a flexible lightweight library that users can easily use or fork when [custom training loops][custom_training] in TensorFlow 2. Orbit handles common
writing [customized training loop code](https://www.tensorflow.org/tutorials/distribute/custom_training) model training tasks such as saving checkpoints, running model evaluations, and
in TF2. It intergates with `tf.distribute` seamlessly and supports running on setting up summary writing, while giving users full control over implementing
different device types (CPU, GPU, and TPU). the inner training loop. It integrates with `tf.distribute` seamlessly and
supports running on different device types (CPU, GPU, and TPU). The core code is
intended to be easy to read and fork.
See our [g3doc](g3doc) at go/orbit-trainer for additional documentation.
[custom_training]: https://www.tensorflow.org/tutorials/distribute/custom_training
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
"""Defines exported symbols for `orbit` package.""" """Defines exported symbols for the `orbit` package."""
from orbit import utils from orbit import utils
......
This diff is collapsed.
...@@ -15,10 +15,14 @@ ...@@ -15,10 +15,14 @@
"""Tests for orbit.controller.""" """Tests for orbit.controller."""
import os import os
from absl import logging from absl import logging
from absl.testing import parameterized from absl.testing import parameterized
import numpy as np import numpy as np
from orbit import controller from orbit import controller
from orbit import runner
from orbit import standard_runner from orbit import standard_runner
import tensorflow as tf import tensorflow as tf
...@@ -65,12 +69,8 @@ class TestRunner(standard_runner.StandardTrainer, ...@@ -65,12 +69,8 @@ class TestRunner(standard_runner.StandardTrainer,
self.train_loss = tf.keras.metrics.Mean("train_loss", dtype=tf.float32) self.train_loss = tf.keras.metrics.Mean("train_loss", dtype=tf.float32)
self.eval_loss = tf.keras.metrics.Mean("eval_loss", dtype=tf.float32) self.eval_loss = tf.keras.metrics.Mean("eval_loss", dtype=tf.float32)
self.return_numpy = return_numpy self.return_numpy = return_numpy
train_dataset = ( train_dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
self.strategy.experimental_distribute_datasets_from_function(dataset_fn) eval_dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
)
eval_dataset = (
self.strategy.experimental_distribute_datasets_from_function(dataset_fn)
)
standard_runner.StandardTrainer.__init__(self, train_dataset) standard_runner.StandardTrainer.__init__(self, train_dataset)
standard_runner.StandardEvaluator.__init__(self, eval_dataset) standard_runner.StandardEvaluator.__init__(self, eval_dataset)
...@@ -95,8 +95,7 @@ class TestRunner(standard_runner.StandardTrainer, ...@@ -95,8 +95,7 @@ class TestRunner(standard_runner.StandardTrainer,
} }
def build_eval_dataset(self): def build_eval_dataset(self):
return self.strategy.experimental_distribute_datasets_from_function( return self.strategy.distribute_datasets_from_function(dataset_fn)
dataset_fn)
def eval_begin(self): def eval_begin(self):
self.eval_loss.reset_states() self.eval_loss.reset_states()
...@@ -125,8 +124,7 @@ class TestEvaluator(standard_runner.StandardEvaluator): ...@@ -125,8 +124,7 @@ class TestEvaluator(standard_runner.StandardEvaluator):
def __init__(self): def __init__(self):
self.strategy = tf.distribute.get_strategy() self.strategy = tf.distribute.get_strategy()
self.model = create_model() self.model = create_model()
eval_dataset = self.strategy.experimental_distribute_datasets_from_function( eval_dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
dataset_fn)
standard_runner.StandardEvaluator.__init__(self, eval_dataset) standard_runner.StandardEvaluator.__init__(self, eval_dataset)
def eval_reduce(self, state, output): def eval_reduce(self, state, output):
...@@ -157,16 +155,20 @@ class TestEvaluator(standard_runner.StandardEvaluator): ...@@ -157,16 +155,20 @@ class TestEvaluator(standard_runner.StandardEvaluator):
} }
class TestEvaluatorNoOutput(runner.AbstractEvaluator):
def evaluate(self, num_steps):
pass
class TestEvaluatorWithNestedSummary(standard_runner.StandardEvaluator): class TestEvaluatorWithNestedSummary(standard_runner.StandardEvaluator):
"""Implements the training and evaluation APIs for the test model.""" """Implements the training and evaluation APIs for the test model."""
def __init__(self): def __init__(self):
self.strategy = tf.distribute.get_strategy() self.strategy = tf.distribute.get_strategy()
self.model = create_model() self.model = create_model()
dataset = self.strategy.experimental_distribute_datasets_from_function( dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
dataset_fn) dataset2 = self.strategy.distribute_datasets_from_function(dataset_fn)
dataset2 = self.strategy.experimental_distribute_datasets_from_function(
dataset_fn)
self.loss = tf.keras.metrics.Mean("loss", dtype=tf.float32) self.loss = tf.keras.metrics.Mean("loss", dtype=tf.float32)
self.accuracy = tf.keras.metrics.CategoricalAccuracy( self.accuracy = tf.keras.metrics.CategoricalAccuracy(
"accuracy", dtype=tf.float32) "accuracy", dtype=tf.float32)
...@@ -217,9 +219,7 @@ class TestTrainerWithSummaries(standard_runner.StandardTrainer): ...@@ -217,9 +219,7 @@ class TestTrainerWithSummaries(standard_runner.StandardTrainer):
self.optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1) self.optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1)
self.global_step = self.optimizer.iterations self.global_step = self.optimizer.iterations
self.train_loss = tf.keras.metrics.Mean("train_loss", dtype=tf.float32) self.train_loss = tf.keras.metrics.Mean("train_loss", dtype=tf.float32)
train_dataset = ( train_dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
self.strategy.experimental_distribute_datasets_from_function(dataset_fn)
)
standard_runner.StandardTrainer.__init__( standard_runner.StandardTrainer.__init__(
self, self,
train_dataset, train_dataset,
...@@ -227,8 +227,7 @@ class TestTrainerWithSummaries(standard_runner.StandardTrainer): ...@@ -227,8 +227,7 @@ class TestTrainerWithSummaries(standard_runner.StandardTrainer):
use_tpu_summary_optimization=True)) use_tpu_summary_optimization=True))
def build_train_dataset(self): def build_train_dataset(self):
return self.strategy.experimental_distribute_datasets_from_function( return self.strategy.distribute_datasets_from_function(dataset_fn)
dataset_fn)
def train_step(self, iterator): def train_step(self, iterator):
...@@ -344,6 +343,26 @@ class ControllerTest(tf.test.TestCase, parameterized.TestCase): ...@@ -344,6 +343,26 @@ class ControllerTest(tf.test.TestCase, parameterized.TestCase):
self.assertNotEmpty(tf.io.gfile.glob( self.assertNotEmpty(tf.io.gfile.glob(
os.path.join(self.model_dir, "summaries/eval/events.*"))) os.path.join(self.model_dir, "summaries/eval/events.*")))
def test_restore_from_most_recent_checkpoint(self):
test_runner = TestRunner()
checkpoint = tf.train.Checkpoint(model=test_runner.model)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step,
checkpoint_interval=5)
test_controller = controller.Controller(
trainer=test_runner,
global_step=test_runner.global_step,
checkpoint_manager=checkpoint_manager,
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"),
steps_per_loop=5)
test_controller.train(20)
self.assertLen(checkpoint_manager.checkpoints, 4)
restored_path = test_controller.restore_checkpoint()
self.assertEqual(restored_path, checkpoint_manager.checkpoints[-1])
@parameterized.named_parameters(("return_numpy", True), @parameterized.named_parameters(("return_numpy", True),
("return_tensor", False)) ("return_tensor", False))
def test_train_and_evaluate(self, return_numpy): def test_train_and_evaluate(self, return_numpy):
...@@ -601,7 +620,7 @@ class ControllerTest(tf.test.TestCase, parameterized.TestCase): ...@@ -601,7 +620,7 @@ class ControllerTest(tf.test.TestCase, parameterized.TestCase):
self.assertLess(test_runner.global_step, 10) self.assertLess(test_runner.global_step, 10)
def test_evaluate_with_loss_outputs(self): def test_evaluate_with_loss_output(self):
test_evaluator = TestEvaluator() test_evaluator = TestEvaluator()
checkpoint = tf.train.Checkpoint(model=test_evaluator.model) checkpoint = tf.train.Checkpoint(model=test_evaluator.model)
...@@ -622,6 +641,13 @@ class ControllerTest(tf.test.TestCase, parameterized.TestCase): ...@@ -622,6 +641,13 @@ class ControllerTest(tf.test.TestCase, parameterized.TestCase):
summaries_with_matching_keyword( summaries_with_matching_keyword(
"eval_loss", os.path.join(self.model_dir, "summaries/eval"))) "eval_loss", os.path.join(self.model_dir, "summaries/eval")))
def test_evaluate_with_no_output(self):
test_controller = controller.Controller(
evaluator=TestEvaluatorNoOutput(),
global_step=tf.Variable(0, dtype=tf.int64),
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
self.assertEqual(test_controller.evaluate(steps=5), {})
def test_train_and_evaluate_reset_datasets(self): def test_train_and_evaluate_reset_datasets(self):
test_runner = TestRunner() test_runner = TestRunner()
...@@ -635,11 +661,9 @@ class ControllerTest(tf.test.TestCase, parameterized.TestCase): ...@@ -635,11 +661,9 @@ class ControllerTest(tf.test.TestCase, parameterized.TestCase):
train_steps=10, eval_steps=2, eval_interval=6) train_steps=10, eval_steps=2, eval_interval=6)
train_dataset = ( train_dataset = (
test_runner.strategy.experimental_distribute_datasets_from_function( test_runner.strategy.distribute_datasets_from_function(dataset_fn))
dataset_fn))
eval_dataset = ( eval_dataset = (
test_runner.strategy.experimental_distribute_datasets_from_function( test_runner.strategy.distribute_datasets_from_function(dataset_fn))
dataset_fn))
test_runner.train_dataset = train_dataset test_runner.train_dataset = train_dataset
test_runner.eval_dataset = eval_dataset test_runner.eval_dataset = eval_dataset
......
...@@ -12,62 +12,72 @@ ...@@ -12,62 +12,72 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
"""An abstraction that users can easily handle their custom training loops.""" """Provides AbstractTrainer/Evaluator base classes, defining train/eval APIs."""
import abc import abc
from typing import Dict, Optional, Text
from typing import Dict, Optional, Union
import numpy as np
import tensorflow as tf import tensorflow as tf
Output = Dict[str, Union[tf.Tensor, float, np.number, np.ndarray, 'Output']] # pytype: disable=not-supported-yet
class AbstractTrainer(tf.Module, metaclass=abc.ABCMeta): class AbstractTrainer(tf.Module, metaclass=abc.ABCMeta):
"""An abstract class defining the APIs required for training.""" """An abstract class defining the API required for training."""
@abc.abstractmethod @abc.abstractmethod
def train(self, def train(self, num_steps: tf.Tensor) -> Optional[Output]:
num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]: """Implements `num_steps` steps of training.
"""Implements model training with multiple steps.
This method will by called the `Controller` to perform the "inner loop" of
In training, it is common to break the total training steps into several training. This inner loop amortizes the cost of bookkeeping associated with
training loops, so users can do checkpointing, write summaries and run some checkpointing, evaluation, and writing summaries. Additionally, the inner
python callbacks. This is necessary for getting good performance in TPU loop can be implemented (if desired) using TensorFlow's looping constructs
training, as the overhead for launching a multi worker tf.function may be (e.g. a `for` loop over a `tf.range` inside a `tf.function`), which can be
large in Eager mode. It is usually encouraged to create a host training loop necessary for getting optimal performance when running on TPU. For cases
(e.g. using a `tf.range` wrapping `strategy.run` inside a that don't require peak performance, a simple Python loop can be used
`tf.function`) in the TPU case. For the cases that don't require host instead for simplicity.
training loop to achieve peak performance, users can just implement a simple
python loop to drive each step.
Args: Args:
num_steps: A guideline for how many training steps to run. Note that it is num_steps: The number of training steps to run. Note that it is up to the
up to the model what constitutes a "step" (this may involve more than model what constitutes a "step", which may involve more than one update
one update to model parameters, e.g. if training a GAN). to model parameters (e.g., if training a GAN).
Returns: Returns:
The function may return a dictionary of `Tensors` or numpy arrays, which Either `None`, or a dictionary mapping names to `Tensor`s or NumPy values.
will be written to logs and as TensorBoard summaries. It can also be a If a dictionary is returned, it will be written to logs and as TensorBoard
nested dictionary, yielding a hierarchy of summary directories. summaries. The dictionary may also be nested, which will generate a
hierarchy of summary directories.
""" """
pass pass
class AbstractEvaluator(tf.Module, metaclass=abc.ABCMeta): class AbstractEvaluator(tf.Module, metaclass=abc.ABCMeta):
"""An abstract class defining the APIs required for evaluation.""" """An abstract class defining the API required for evaluation."""
@abc.abstractmethod @abc.abstractmethod
def evaluate( def evaluate(self, num_steps: tf.Tensor) -> Optional[Output]:
self, num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]: """Implements `num_steps` steps of evaluation.
"""Implements model evaluation.
This method will by called the `Controller` to perform an evaluation. The
`num_steps` parameter specifies the number of steps of evaluation to run,
which is specified by the user when calling one of the `Controller`'s
evaluation methods. A special sentinel value of `-1` is reserved to indicate
evaluation should run until the underlying data source is exhausted.
Args: Args:
num_steps: A guideline for how many evaluation steps to run. Note that it num_steps: The number of evaluation steps to run. Note that it is up to
is up to the model what constitutes a "step". Generally, it may be the model what constitutes a "step". Evaluations may also want to
desirable to support both a limited number of eval steps and iterating support "complete" evaluations when `num_steps == -1`, running until a
over a full dataset (however many steps are required) when `num_steps` given data source is exhausted.
is `None`.
Returns: Returns:
The function may return a dictionary of `Tensors` or numpy arrays, which Either `None`, or a dictionary mapping names to `Tensor`s or NumPy values.
will be written to logs and as TensorBoard summaries. It can also be a If a dictionary is returned, it will be written to logs and as TensorBoard
nested dictionary, yielding a hierarchy of summary directories. summaries. The dictionary may also be nested, which will generate a
hierarchy of summary directories.
""" """
pass pass
...@@ -12,11 +12,30 @@ ...@@ -12,11 +12,30 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
"""AbstractTrainer/Evaluator implementations for standard settings.""" """AbstractTrainer/Evaluator subclasses with added functionality.
The classes in this module provide some additional structure to the bare
`AbstractTrainer`/`AbstractEvaluator` APIs.
Both `StandardTrainer` and `StandardEvaluator` split the train/eval loops into
"begin", "step", and "end" methods, and provide an implementation of the loop
itself that makes calls to the relevant step method.
`StandardTrainer` supports running the loop using the TF while loop construct
for added performance (particularly on TPUs). It additionally provides some
functionality to make writing summaries from inside a model more performant when
running on TPUs.
These classes are intended to work well in common settings, however there may
be use cases these classes don't support (for instance, `StandardEvaluator` in
particular doesn't support running full evaluations over multiple different eval
datasets). Users are encouraged to simply fall back to custom `AbstractTrainer`
and `AbstractEvaluator` subclasses in these cases.
"""
import abc import abc
from typing import Any, Dict, Optional, Text from typing import Any, Optional
import dataclasses import dataclasses
...@@ -65,14 +84,26 @@ def _create_train_loop_fn(train_step_fn, options: StandardTrainerOptions): ...@@ -65,14 +84,26 @@ def _create_train_loop_fn(train_step_fn, options: StandardTrainerOptions):
class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta): class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta):
"""Implements the standard functionality of AbstractTrainer APIs.""" """Implements standard functionality on top of the AbstractTrainer API.
This class structures the training "inner loop" roughly as follows:
train_loop_begin()
for _ in range(num_steps):
train_step(train_iterator)
return train_loop_end()
Calls to `train_loop_begin` and `train_loop_end` are always done in eager
mode, while the loop/`train_step` may be implemented using `tf.while` and/or
`tf.function`, as determined by the `options` passed to `__init__`.
"""
def __init__(self, train_dataset, options: StandardTrainerOptions = None): def __init__(self, train_dataset, options: StandardTrainerOptions = None):
"""Construct a `StandardTrainer` object. """Initializes the `StandardTrainer` instance.
Args: Args:
train_dataset: A tf.nest-compatible structure of tf.data.Dataset or train_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
DistributedDataset. `DistributedDataset`.
options: An `orbit.StandardTrainerOptions` instance. options: An `orbit.StandardTrainerOptions` instance.
""" """
options = options or StandardTrainerOptions() options = options or StandardTrainerOptions()
...@@ -88,11 +119,16 @@ class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta): ...@@ -88,11 +119,16 @@ class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta):
self._train_iter = None self._train_iter = None
self._train_loop_fn = None self._train_loop_fn = None
def train( def train(self, num_steps: tf.Tensor) -> Optional[runner.Output]:
self, """Implements `num_steps` steps of training.
num_steps: Optional[tf.Tensor],
) -> Optional[Dict[Text, tf.Tensor]]: Args:
"""See base class.""" num_steps: The number of training steps to run. This corresponds directly
to the number of calls made to `train_step`.
Returns:
The output of `train_loop_end`.
"""
self.train_loop_begin() self.train_loop_begin()
if self._train_loop_fn is None: if self._train_loop_fn is None:
...@@ -108,9 +144,10 @@ class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta): ...@@ -108,9 +144,10 @@ class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta):
def train_loop_begin(self): def train_loop_begin(self):
"""Called once at the beginning of the training loop. """Called once at the beginning of the training loop.
This method is called before dataset iterators creation. This method is always called in eager mode, and is a good place to reset
This is a good place to reset metrics that accumulate values over multiple metrics that accumulate values over multiple steps of training.
steps of training.
Note that this method is called before dataset iterator creation.
""" """
pass pass
...@@ -118,28 +155,30 @@ class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta): ...@@ -118,28 +155,30 @@ class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta):
def train_step(self, iterator): def train_step(self, iterator):
"""Implements one step of training. """Implements one step of training.
What a "step" consists of is up to the implementer. If using distribution What a "step" consists of is up to the implementer. When using distribution
strategies, the call to this method should take place in the "cross-replica strategies, the call to this method takes place in the "cross-replica
context" for generality, to allow e.g. multiple iterator dequeues and calls context" for generality, to allow e.g. multiple iterator dequeues and calls
to `strategy.run`. to `strategy.run`.
Note that if `use_tf_function=True`, all the code inside `train_step` should Note that if `use_tf_function=True`, all the code inside `train_step` should
be tf.function compatible, as they will be traced with tf.function. This be compatible with `tf.function` tracing (and in particular, any state
means you cannot put arbitrary python code in this function. If users have modifications involving `self` should be avoided). In some cases, non-
any numpy operations, they should be put in `train_loop_begin` or `tf.function` compatible code can be moved to `train_loop_begin` or
`train_loop_end` functions. `train_loop_end`, which always execute eagerly.
Args: Args:
iterator: A tf.nest-compatible structure of tf.data Iterator or iterator: A `tf.nest`-compatible structure of `tf.data.Iterator` or
DistributedIterator. `DistributedIterator`. The structure of this input matches the structure
of `train_dataset` as passed to `__init__`.
""" """
pass pass
def train_loop_end(self) -> Optional[Dict[Text, tf.Tensor]]: def train_loop_end(self) -> Optional[runner.Output]:
"""Called at the end of the training loop. """Called once at the end of the training loop.
This is a good place to get metric results. The value returned from this This method is always called in eager mode, and is a good place to get
function will be returned as-is from the train() method. metric results. The value returned from this function will be returned as-is
from the `train` method implementation provided by `StandardTrainer`.
Returns: Returns:
The function may return a dictionary of `Tensors`, which will be The function may return a dictionary of `Tensors`, which will be
...@@ -150,18 +189,18 @@ class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta): ...@@ -150,18 +189,18 @@ class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta):
@property @property
def train_dataset(self): def train_dataset(self):
"""Returns the train_dataset instance.""" """The current training dataset."""
return self._train_dataset return self._train_dataset
@train_dataset.setter @train_dataset.setter
def train_dataset(self, train_dataset): def train_dataset(self, train_dataset):
"""Set a new train dataset and replace with the existing one. """Sets a new training dataset, replacing the current one.
Any unfinished work in the previous dataset will be discarded. Any unprocessed examples in the current dataset are discarded.
Args: Args:
train_dataset: A tf.nest-compatible structure of tf.data.Dataset or train_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
DistributedDataset. `DistributedDataset`.
""" """
self._train_dataset = train_dataset self._train_dataset = train_dataset
self._train_iter = None self._train_iter = None
...@@ -187,25 +226,49 @@ def _create_eval_loop_fn(eval_step_fn, options: StandardEvaluatorOptions): ...@@ -187,25 +226,49 @@ def _create_eval_loop_fn(eval_step_fn, options: StandardEvaluatorOptions):
class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta): class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta):
"""Implements the standard functionality of AbstractEvaluator APIs.""" """Implements the standard functionality of AbstractEvaluator APIs.
This class structures evaluation roughly as follows:
state = eval_begin()
for _ in range(num_steps):
step_outputs = eval_step(eval_iterator)
state = eval_reduce(state, step_outputs)
return eval_end(state)
Calls to `eval_begin`, `eval_reduce`, and `eval_end` are always done in eager
mode, while `eval_step` may be compiled with `tf.function` as determined by
the `options` passed to `__init__`.
This class does not support completely evaluating multiple different datasets
(i.e., where every example of each dataset should be processed, as opposed to
running for a fixed number of evaluation steps). A custom `AbstractEvaluator`
is recommended in this case.
"""
def __init__(self, eval_dataset, options: StandardEvaluatorOptions = None): def __init__(self, eval_dataset, options: StandardEvaluatorOptions = None):
"""Construct a `StandardEvaluator` object. """Initializes the `StandardEvaluator` instance.
Args: Args:
eval_dataset: A tf.nest-compatible structure of tf.data.Dataset or eval_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
DistributedDataset. `DistributedDataset`.
options: An `orbit.StandardEvaluatorOptions` instance. options: An `orbit.StandardEvaluatorOptions` instance.
""" """
self._eval_options = options or StandardEvaluatorOptions() self._eval_options = options or StandardEvaluatorOptions()
self._eval_dataset = eval_dataset self._eval_dataset = eval_dataset
self._eval_loop_fn = None self._eval_loop_fn = None
def evaluate( def evaluate(self, num_steps: tf.Tensor) -> Optional[runner.Output]:
self, """Implements `num_steps` steps of evaluation.
num_steps: Optional[tf.Tensor],
) -> Optional[Dict[Text, tf.Tensor]]: Args:
"""See base class.""" num_steps: The number of evaluation steps to run. When this is -1,
evaluation proceeds until a call to `eval_step` raises a `StopIteration`
or `tf.errors.OutOfRangeError`.
Returns:
The output of `self.eval_end()`.
"""
outputs = self.eval_begin() # pylint: disable=assignment-from-no-return outputs = self.eval_begin() # pylint: disable=assignment-from-no-return
if self._eval_loop_fn is None: if self._eval_loop_fn is None:
...@@ -224,12 +287,13 @@ class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta): ...@@ -224,12 +287,13 @@ class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta):
def eval_begin(self) -> Any: def eval_begin(self) -> Any:
"""Called once at the beginning of the evaluation. """Called once at the beginning of the evaluation.
This method is called before dataset iterators creation. This method is always called in eager mode, and is a good place to reset
This is a good place to reset metrics that accumulate values over the entire metrics that accumulate values over the course of evaluation.
evaluation.
Note that this method is called before dataset iterator creation.
Returns: Returns:
An output which is passed as `state` argument into `eval_reduce` function. An value to pass as the `state` argument to `eval_reduce`.
""" """
pass pass
...@@ -237,20 +301,20 @@ class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta): ...@@ -237,20 +301,20 @@ class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta):
def eval_step(self, iterator) -> Any: def eval_step(self, iterator) -> Any:
"""Implements one step of evaluation. """Implements one step of evaluation.
What a "step" consists of is up to the implementer. If using distribution What a "step" consists of is up to the implementer. When using distribution
strategies, the call to this method should take place in the "cross-replica strategies, the call to this method takes place in the "cross-replica
context" for generality, to allow e.g. multiple iterator dequeues and calls context" for generality, to allow e.g. multiple iterator dequeues and calls
to `strategy.run`. to `strategy.run`.
Note that if `use_tf_function=True`, all the code inside `eval_step` should Note that if `use_tf_function=True`, all the code inside `eval_step` should
be tf.function compatible, as they will be traced with tf.function. This be compatible with `tf.function` tracing (and in particular, any state
means you cannot put arbitrary python code in this function. If users have modifications involving `self` should be avoided). In some cases, non-
any numpy operations, they should be put in `eval_begin`, `eval_end` or `tf.function` compatible code can be moved to `eval_loop_begin`,
`eval_reduce` functions. `eval_reduce`, or `eval_loop_end`, which always execute eagerly.
Args: Args:
iterator: A tf.nest-compatible structure of tf.data Iterator or iterator: A `tf.nest`-compatible structure of `tf.data.Iterator` or
DistributedIterator. `DistributedIterator`.
Returns: Returns:
An output which is passed as `step_outputs` argument into `eval_reduce` An output which is passed as `step_outputs` argument into `eval_reduce`
...@@ -258,14 +322,18 @@ class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta): ...@@ -258,14 +322,18 @@ class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta):
""" """
pass pass
def eval_end(self, *args) -> Optional[Dict[Text, tf.Tensor]]: def eval_end(self, *args) -> Optional[runner.Output]:
"""Called at the end of the evaluation. """Called at the end of the evaluation.
This is a good place to get metric results. The value returned from this Called once at the end of evaluation.
function will be returned as-is from the evaluate() method.
This method is always called in eager mode, and is a good place to get
metric results. The value returned from this function will be returned as-is
from the `evaluate` method implementation provided by `StandardEvaluator`.
Args: Args:
*args: the outputs from `eval_reduce` for the last eval step. *args: The outputs from `eval_reduce` for the last eval step, if they are
non-`None` (if they are `None`, nothing is passed).
Returns: Returns:
The function may return a dictionary of `Tensors`, which will be The function may return a dictionary of `Tensors`, which will be
...@@ -274,35 +342,41 @@ class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta): ...@@ -274,35 +342,41 @@ class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta):
""" """
pass pass
def eval_reduce(self, state=None, step_outputs=None) -> Any: def eval_reduce(self,
"""A function to do the reduction on the evaluation outputs per step. state: Any = None,
step_outputs: Optional[runner.Output] = None) -> Any:
"""A function to perform per-step reduction on the evaluation outputs.
This is useful for passing states throughout evaluation. E.g. it can be used This is useful for passing state throughout evaluation, especially in cases
to maintain the output losses from all the evaluation steps, and compute the where maintaining or accumulating state is hard to accomplish using
mean loss in `eval_end` function. `tf.metrics.Metric` or other `tf.Variable`-based approaches. For instance,
it can be used to easily accumulate all per-example losses from the full
evaluation for subsequent processing in `eval_end()`.
Args: Args:
state: A maintained state throughout the evaluation. state: A state being mainted throughout the evaluation.
step_outputs: Outputs from the current evaluation step. step_outputs: Outputs from the current evaluation step.
Returns: Returns:
An output which is passed as `state` argument into `eval_reduce` function An output which is passed as the `state` argument to this function for the
for the next step. After evaluation is finished, the output from last step next step. After evaluation is finished, the output from last step will be
will be passed into `eval_end` function. passed to `eval_end`.
""" """
pass pass
@property @property
def eval_dataset(self): def eval_dataset(self):
"""Returns the train_datase instance.""" """The current evaluation dataset."""
return self._eval_dataset return self._eval_dataset
@eval_dataset.setter @eval_dataset.setter
def eval_dataset(self, eval_dataset): def eval_dataset(self, eval_dataset):
"""Set a new eval dataset and replace with the existing one. """Sets a new eval dataset, replacing the current one.
Any unprocessed examples in the current dataset are discarded.
Args: Args:
eval_dataset: A tf.nest-compatible structure of tf.data.Dataset or eval_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
DistributedDataset. `DistributedDataset`.
""" """
self._eval_dataset = eval_dataset self._eval_dataset = eval_dataset
...@@ -39,8 +39,7 @@ class TestTrainer(standard_runner.StandardTrainer): ...@@ -39,8 +39,7 @@ class TestTrainer(standard_runner.StandardTrainer):
def __init__(self, options=None): def __init__(self, options=None):
self.strategy = tf.distribute.get_strategy() self.strategy = tf.distribute.get_strategy()
self.global_step = utils.create_global_step() self.global_step = utils.create_global_step()
distribute = self.strategy.experimental_distribute_datasets_from_function dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
dataset = distribute(dataset_fn)
super().__init__(train_dataset=dataset, options=options) super().__init__(train_dataset=dataset, options=options)
def train_loop_begin(self): def train_loop_begin(self):
...@@ -63,8 +62,7 @@ class TestEvaluator(standard_runner.StandardEvaluator): ...@@ -63,8 +62,7 @@ class TestEvaluator(standard_runner.StandardEvaluator):
def __init__(self, options=None): def __init__(self, options=None):
self.strategy = tf.distribute.get_strategy() self.strategy = tf.distribute.get_strategy()
self.global_step = utils.create_global_step() self.global_step = utils.create_global_step()
distribute = self.strategy.experimental_distribute_datasets_from_function dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
dataset = distribute(dataset_fn)
super().__init__(eval_dataset=dataset, options=options) super().__init__(eval_dataset=dataset, options=options)
def eval_begin(self): def eval_begin(self):
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
"""Defines exported symbols for `orbit.utils` package.""" """Defines exported symbols for the `orbit.utils` package."""
from orbit.utils.common import create_global_step from orbit.utils.common import create_global_step
from orbit.utils.common import get_value from orbit.utils.common import get_value
......
...@@ -16,7 +16,6 @@ ...@@ -16,7 +16,6 @@
import inspect import inspect
import numpy as np
import tensorflow as tf import tensorflow as tf
...@@ -46,16 +45,16 @@ def create_global_step() -> tf.Variable: ...@@ -46,16 +45,16 @@ def create_global_step() -> tf.Variable:
def make_distributed_dataset(strategy, dataset_or_fn, *args, **kwargs): def make_distributed_dataset(strategy, dataset_or_fn, *args, **kwargs):
"""A helper function to create distributed dataset. """A utility function to help create a `tf.distribute.DistributedDataset`.
Args: Args:
strategy: An instance of `tf.distribute.Strategy`. strategy: An instance of `tf.distribute.Strategy`.
dataset_or_fn: A instance of `tf.data.Dataset` or a function which takes an dataset_or_fn: A instance of `tf.data.Dataset`, or a "dataset function"
`tf.distribute.InputContext` as input and returns a `tf.data.Dataset`. If returning a `tf.data.Dataset`. If it is a function, it may optionally have
it is a function, it could optionally have an argument named an argument named `input_context` which will be passed a
`input_context` which is `tf.distribute.InputContext` argument type. `tf.distribute.InputContext` instance.
*args: The list of arguments to be passed to dataset_or_fn. *args: Any positional arguments to pass through to `dataset_or_fn`.
**kwargs: Any keyword arguments to be passed. **kwargs: Any keyword arguments to pass through to `dataset_or_fn`.
Returns: Returns:
A distributed Dataset. A distributed Dataset.
...@@ -64,38 +63,37 @@ def make_distributed_dataset(strategy, dataset_or_fn, *args, **kwargs): ...@@ -64,38 +63,37 @@ def make_distributed_dataset(strategy, dataset_or_fn, *args, **kwargs):
strategy = tf.distribute.get_strategy() strategy = tf.distribute.get_strategy()
if isinstance(dataset_or_fn, tf.data.Dataset): if isinstance(dataset_or_fn, tf.data.Dataset):
return strategy.experimental_distribute_dataset(dataset_or_fn) return strategy.distribute_dataset(dataset_or_fn)
if not callable(dataset_or_fn): if not callable(dataset_or_fn):
raise ValueError("`dataset_or_fn` should be either callable or an instance " raise ValueError("`dataset_or_fn` should be either callable or an instance "
"of `tf.data.Dataset`") "of `tf.data.Dataset`.")
def dataset_fn(ctx): def dataset_fn(input_context):
"""Wrapped dataset function for creating distributed dataset..""" """Wraps `dataset_or_fn` for strategy.distribute_datasets_from_function."""
# If `dataset_or_fn` is a function and has `input_context` as argument # If `dataset_or_fn` is a function and has an argument named
# names, pass `ctx` as the value of `input_context` when calling # `input_context`, pass through the given `input_context`. Otherwise
# `dataset_or_fn`. Otherwise `ctx` will not be used when calling # `input_context` will be ignored.
# `dataset_or_fn`.
argspec = inspect.getfullargspec(dataset_or_fn) argspec = inspect.getfullargspec(dataset_or_fn)
args_names = argspec.args arg_names = argspec.args
if "input_context" in args_names: if "input_context" in arg_names:
kwargs["input_context"] = ctx kwargs["input_context"] = input_context
ds = dataset_or_fn(*args, **kwargs) return dataset_or_fn(*args, **kwargs)
return ds
return strategy.experimental_distribute_datasets_from_function(dataset_fn) return strategy.distribute_datasets_from_function(dataset_fn)
def get_value(x) -> np.number: def get_value(x):
"""Returns the value of a variable/tensor. """Returns input values, converting any TensorFlow values to NumPy values.
Args: Args:
x: input variable. x: The input. May be a `tf.Tensor` or `tf.Variable`.
Returns: Returns:
A Numpy array or number. If the input is a TensorFlow `Tensor`, returns the `Tensor`'s equivalent
NumPy value. Otherwise, just returns the input.
""" """
if not tf.is_tensor(x): if not tf.is_tensor(x):
return x return x
......
...@@ -18,14 +18,14 @@ import tensorflow as tf ...@@ -18,14 +18,14 @@ import tensorflow as tf
class EpochHelper: class EpochHelper:
"""A Helper class to handle epochs in Customized Training Loop.""" """A helper class handle bookkeeping of epochs in custom training loops."""
def __init__(self, epoch_steps: int, global_step: tf.Variable): def __init__(self, epoch_steps: int, global_step: tf.Variable):
"""Constructs the EpochHelper. """Initializes the `EpochHelper` instance.
Args: Args:
epoch_steps: An integer indicates how many steps in an epoch. epoch_steps: An integer indicating how many steps are in an epoch.
global_step: A `tf.Variable` instance indicates the current global step. global_step: A `tf.Variable` providing the current global step.
""" """
self._epoch_steps = epoch_steps self._epoch_steps = epoch_steps
self._global_step = global_step self._global_step = global_step
...@@ -46,7 +46,7 @@ class EpochHelper: ...@@ -46,7 +46,7 @@ class EpochHelper:
def epoch_end(self): def epoch_end(self):
"""Returns whether the current epoch should end.""" """Returns whether the current epoch should end."""
if not self._in_epoch: if not self._in_epoch:
raise ValueError("`epoch_end` can only be called inside an epoch") raise ValueError("`epoch_end` can only be called inside an epoch.")
current_step = self._global_step.numpy() current_step = self._global_step.numpy()
epoch = current_step // self._epoch_steps epoch = current_step // self._epoch_steps
......
...@@ -20,36 +20,57 @@ import tensorflow as tf ...@@ -20,36 +20,57 @@ import tensorflow as tf
def create_loop_fn(step_fn): def create_loop_fn(step_fn):
"""Creates a multiple steps function driven by the python while loop. """Creates a loop function driven by a Python `while` loop.
Args: Args:
step_fn: A function which takes `iterator` as input. step_fn: A function taking a nested structure of `tf.data.Iterator` or
`DistributedIterator`. There are no constraints on the return value of the
function (except that it must be compatible with any `reduce_fn` provided
to the returned `loop_fn`).
Returns: Returns:
A callable defined as the `loop_fn` defination below. A loop function taking required `iterator` and `num_steps` parameters, as
well as optional `state` and `reduce_fn` parameters for accumulating state
over multiple iterations of the loop. See the `loop_fn` definition below for
additional details.
""" """
def loop_fn(iterator, num_steps, state=None, reduce_fn=None): def loop_fn(iterator, num_steps, state=None, reduce_fn=None):
"""A loop function with multiple steps. """Makes `num_steps` calls to `step_fn(iterator)`.
Additionally, state may be accumulated across iterations of the loop.
Conceptually, state accumulation is handled roughly as follows:
for _ in range(num_steps):
step_outputs = step_fn(iterator)
state = reduce_fn(state, step_outputs)
return state
However, the implementation is slightly more complicated in order to support
looping until the iterator is exhausted (when `num_steps == -1`) and to
properly catch exceptions when running under async remote eager (as is the
case in TPU training setups involving separate coordinator/worker machines).
Args: Args:
iterator: A nested structure of tf.data `Iterator` or iterator: A nested structure of `tf.data.Iterator` or
`DistributedIterator`. `DistributedIterator`.
num_steps: The number of steps in the loop. If `num_steps==-1`, will num_steps: The number of steps in the loop. If `num_steps == -1`, will
iterate until exausting the iterator. iterate until exausting the iterator.
state: An optional initial state before running the loop. state: An optional initial state before running the loop.
reduce_fn: a callable defined as `def reduce_fn(state, value)`, where reduce_fn: A callable taking two inputs, `state` and `value`, where
`value` is the outputs from `step_fn`. `state` is the previous output from `reduce_fn`, and `value` is the
output from `step_fn`.
Returns: Returns:
The updated state. The final state returned by `reduce_fn`, or `None` if `state` and
`reduce_fn` are not provided.
""" """
try: try:
step = 0 step = 0
# To make sure the OutOfRangeError exception can be handled well with # To make sure the OutOfRangeError exception can be handled well under
# async remote eager, we need to wrap the loop body in a `async_scope`. # async remote eager, we need to wrap the loop body in `async_scope`.
with tf.experimental.async_scope(): with tf.experimental.async_scope():
while (num_steps == -1 or step < num_steps): while num_steps == -1 or step < num_steps:
outputs = step_fn(iterator) outputs = step_fn(iterator)
if reduce_fn is not None: if reduce_fn is not None:
state = reduce_fn(state, outputs) state = reduce_fn(state, outputs)
...@@ -63,26 +84,32 @@ def create_loop_fn(step_fn): ...@@ -63,26 +84,32 @@ def create_loop_fn(step_fn):
def create_tf_while_loop_fn(step_fn): def create_tf_while_loop_fn(step_fn):
"""Create a multiple steps function driven by tf.while_loop on the host. """Creates a loop function compatible with TF's AutoGraph loop conversion.
Args: Args:
step_fn: A function which takes `iterator` as input. step_fn: A function taking a nested structure of `tf.data.Iterator` or
`DistributedIterator`. Currently, any return values are ignored.
Returns: Returns:
A callable defined as the `loop_fn` defination below. A loop function taking required `iterator` and `num_steps` parameters. If
called inside a `tf.function`, the loop will be converted by AutoGraph into
a `tf.while_loop` construct. See the `loop_fn` definition below for
additional details.
""" """
def loop_fn(iterator, num_steps): def loop_fn(iterator, num_steps):
"""A loop function with multiple steps. """Makes `num_steps` calls to `step_fn(iterator)`.
Args: Args:
iterator: A nested structure of tf.data `Iterator` or iterator: A nested structure of `tf.data.Iterator` or
`DistributedIterator`. `DistributedIterator`.
num_steps: The number of steps in the loop. Must be a tf.Tensor. num_steps: The number of steps in the loop. Should be passed as a
`tf.Tensor`. Iterating until iterator exhaustion is not supported.
""" """
if not isinstance(num_steps, tf.Tensor): if not isinstance(num_steps, tf.Tensor):
raise ValueError("`num_steps` should be an `tf.Tensor`. Python object " raise ValueError(
"may cause retracing.") "`num_steps` should be a `tf.Tensor`. Passing a Python value can "
"cause unnecessary retracing when wrapped by `tf.function`.")
for _ in tf.range(num_steps): for _ in tf.range(num_steps):
step_fn(iterator) step_fn(iterator)
......
...@@ -20,18 +20,19 @@ import tensorflow as tf ...@@ -20,18 +20,19 @@ import tensorflow as tf
class SummaryManager: class SummaryManager:
"""A class manages writing summaries.""" """A utility class for managing summary writing."""
def __init__(self, summary_dir, summary_fn, global_step=None): def __init__(self, summary_dir, summary_fn, global_step=None):
"""Construct a summary manager object. """Initializes the `SummaryManager` instance.
Args: Args:
summary_dir: the directory to write summaries. summary_dir: The directory in which to write summaries. If `None`, all
summary_fn: A callable defined as `def summary_fn(name, tensor, summary writing operations provided by this class are no-ops.
step=None)`, which describes the summary operation. summary_fn: A callable defined accepting `name`, `value`, and `step`
global_step: A `tf.Variable` instance for the global step. parameters, making calls to `tf.summary` functions to write summaries.
global_step: A `tf.Variable` containing the global step value.
""" """
self._enabled = (summary_dir is not None) self._enabled = summary_dir is not None
self._summary_dir = summary_dir self._summary_dir = summary_dir
self._summary_fn = summary_fn self._summary_fn = summary_fn
self._summary_writers = {} self._summary_writers = {}
...@@ -42,12 +43,12 @@ class SummaryManager: ...@@ -42,12 +43,12 @@ class SummaryManager:
self._global_step = global_step self._global_step = global_step
def summary_writer(self, relative_path=""): def summary_writer(self, relative_path=""):
"""Returns the underlying summary writer. """Returns the underlying summary writer for a specific subdirectory.
Args: Args:
relative_path: The current path in which to write summaries, relative to relative_path: The current path in which to write summaries, relative to
the summary directory. By default it is empty, which specifies the root the summary directory. By default it is empty, which corresponds to the
directory. root directory.
""" """
if self._summary_writers and relative_path in self._summary_writers: if self._summary_writers and relative_path in self._summary_writers:
return self._summary_writers[relative_path] return self._summary_writers[relative_path]
...@@ -59,43 +60,41 @@ class SummaryManager: ...@@ -59,43 +60,41 @@ class SummaryManager:
return self._summary_writers[relative_path] return self._summary_writers[relative_path]
def flush(self): def flush(self):
"""Flush the underlying summary writers.""" """Flushes the underlying summary writers."""
if self._enabled: if self._enabled:
tf.nest.map_structure(tf.summary.flush, self._summary_writers) tf.nest.map_structure(tf.summary.flush, self._summary_writers)
def write_summaries(self, summary_dict): def write_summaries(self, summary_dict):
"""Write summaries for the given values. """Writes summaries for the given dictionary of values.
This recursively creates subdirectories for any nested dictionaries This recursively creates subdirectories for any nested dictionaries
provided in `summary_dict`, yielding a hierarchy of directories which will provided in `summary_dict`, yielding a hierarchy of directories which will
then be reflected in the TensorBoard UI as different colored curves. then be reflected in the TensorBoard UI as different colored curves.
E.g. users may evaluate on muliple datasets and return `summary_dict` as a For example, users may evaluate on muliple datasets and return
nested dictionary. `summary_dict` as a nested dictionary:
```
{ {
"dataset": { "dataset1": {
"loss": loss, "loss": loss1,
"accuracy": accuracy "accuracy": accuracy1
}, },
"dataset2": { "dataset2": {
"loss": loss2, "loss": loss2,
"accuracy": accuracy2 "accuracy": accuracy2
}, },
} }
```
This will create two subdirectories "dataset" and "dataset2" inside the This will create two subdirectories, "dataset1" and "dataset2", inside the
summary root directory. Each directory will contain event files including summary root directory. Each directory will contain event files including
both "loss" and "accuracy" summaries. both "loss" and "accuracy" summaries.
Args: Args:
summary_dict: A dictionary of values. If any value in `summary_dict` is summary_dict: A dictionary of values. If any value in `summary_dict` is
itself a dictionary, then the function will recursively create itself a dictionary, then the function will create a subdirectory with
subdirectories with names given by the keys in the dictionary. The name given by the corresponding key. This is performed recursively. Leaf
Tensor values are summarized using the summary writer instance specific values are then summarized using the summary writer instance specific to
to the parent relative path. the parent relative path.
""" """
if not self._enabled: if not self._enabled:
return return
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment