Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
a38bf8d7
Commit
a38bf8d7
authored
Feb 05, 2017
by
Arvind Agarwal
Browse files
fixed a bug in sampled_loss(), made compatible for 0.12.0
parent
2fd3dcf3
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
7 additions
and
7 deletions
+7
-7
tutorials/rnn/translate/seq2seq_model.py
tutorials/rnn/translate/seq2seq_model.py
+7
-7
No files found.
tutorials/rnn/translate/seq2seq_model.py
View file @
a38bf8d7
...
@@ -100,7 +100,7 @@ class Seq2SeqModel(object):
...
@@ -100,7 +100,7 @@ class Seq2SeqModel(object):
b
=
tf
.
get_variable
(
"proj_b"
,
[
self
.
target_vocab_size
],
dtype
=
dtype
)
b
=
tf
.
get_variable
(
"proj_b"
,
[
self
.
target_vocab_size
],
dtype
=
dtype
)
output_projection
=
(
w
,
b
)
output_projection
=
(
w
,
b
)
def
sampled_loss
(
labels
,
input
s
):
def
sampled_loss
(
inputs
,
label
s
):
labels
=
tf
.
reshape
(
labels
,
[
-
1
,
1
])
labels
=
tf
.
reshape
(
labels
,
[
-
1
,
1
])
# We need to compute the sampled_softmax_loss using 32bit floats to
# We need to compute the sampled_softmax_loss using 32bit floats to
# avoid numerical instabilities.
# avoid numerical instabilities.
...
@@ -120,17 +120,17 @@ class Seq2SeqModel(object):
...
@@ -120,17 +120,17 @@ class Seq2SeqModel(object):
# Create the internal multi-layer cell for our RNN.
# Create the internal multi-layer cell for our RNN.
def
single_cell
():
def
single_cell
():
return
tf
.
contrib
.
rnn
.
GRUCell
(
size
)
return
tf
.
nn
.
rnn_cell
.
GRUCell
(
size
)
if
use_lstm
:
if
use_lstm
:
def
single_cell
():
def
single_cell
():
return
tf
.
contrib
.
rnn
.
BasicLSTMCell
(
size
)
return
tf
.
nn
.
rnn_cell
.
BasicLSTMCell
(
size
)
cell
=
single_cell
()
cell
=
single_cell
()
if
num_layers
>
1
:
if
num_layers
>
1
:
cell
=
tf
.
contrib
.
rnn
.
MultiRNNCell
([
single_cell
()
for
_
in
range
(
num_layers
)])
cell
=
tf
.
nn
.
rnn_cell
.
MultiRNNCell
([
single_cell
()
for
_
in
range
(
num_layers
)])
# The seq2seq function: we use embedding for the input and attention.
# The seq2seq function: we use embedding for the input and attention.
def
seq2seq_f
(
encoder_inputs
,
decoder_inputs
,
do_decode
):
def
seq2seq_f
(
encoder_inputs
,
decoder_inputs
,
do_decode
):
return
tf
.
contrib
.
legacy_
seq2seq
.
embedding_attention_seq2seq
(
return
tf
.
nn
.
seq2seq
.
embedding_attention_seq2seq
(
encoder_inputs
,
encoder_inputs
,
decoder_inputs
,
decoder_inputs
,
cell
,
cell
,
...
@@ -160,7 +160,7 @@ class Seq2SeqModel(object):
...
@@ -160,7 +160,7 @@ class Seq2SeqModel(object):
# Training outputs and losses.
# Training outputs and losses.
if
forward_only
:
if
forward_only
:
self
.
outputs
,
self
.
losses
=
tf
.
contrib
.
legacy_
seq2seq
.
model_with_buckets
(
self
.
outputs
,
self
.
losses
=
tf
.
nn
.
seq2seq
.
model_with_buckets
(
self
.
encoder_inputs
,
self
.
decoder_inputs
,
targets
,
self
.
encoder_inputs
,
self
.
decoder_inputs
,
targets
,
self
.
target_weights
,
buckets
,
lambda
x
,
y
:
seq2seq_f
(
x
,
y
,
True
),
self
.
target_weights
,
buckets
,
lambda
x
,
y
:
seq2seq_f
(
x
,
y
,
True
),
softmax_loss_function
=
softmax_loss_function
)
softmax_loss_function
=
softmax_loss_function
)
...
@@ -172,7 +172,7 @@ class Seq2SeqModel(object):
...
@@ -172,7 +172,7 @@ class Seq2SeqModel(object):
for
output
in
self
.
outputs
[
b
]
for
output
in
self
.
outputs
[
b
]
]
]
else
:
else
:
self
.
outputs
,
self
.
losses
=
tf
.
contrib
.
legacy_
seq2seq
.
model_with_buckets
(
self
.
outputs
,
self
.
losses
=
tf
.
nn
.
seq2seq
.
model_with_buckets
(
self
.
encoder_inputs
,
self
.
decoder_inputs
,
targets
,
self
.
encoder_inputs
,
self
.
decoder_inputs
,
targets
,
self
.
target_weights
,
buckets
,
self
.
target_weights
,
buckets
,
lambda
x
,
y
:
seq2seq_f
(
x
,
y
,
False
),
lambda
x
,
y
:
seq2seq_f
(
x
,
y
,
False
),
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment