".github/vscode:/vscode.git/clone" did not exist on "3289c1207d238fada989ca1dcd3b948befb870be"
Commit a0dd0e8a authored by anivegesana's avatar anivegesana
Browse files

Reorganize unit tests

parent 37434ecb
......@@ -22,7 +22,7 @@ import tensorflow as tf
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.vision.beta.projects.yolo.modeling.backbones import Darknet
from official.vision.beta.projects.yolo.modeling.backbones import darknet
class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
......@@ -37,8 +37,7 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
"""Test creation of ResNet family models."""
tf.keras.backend.set_image_data_format('channels_last')
network = Darknet.Darknet(model_id=model_id, min_level=3, max_level=5)
print(network.model_id)
network = darknet.Darknet(model_id=model_id, min_level=3, max_level=5)
self.assertEqual(network.model_id, model_id)
inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
......@@ -70,7 +69,7 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
tf.keras.backend.set_image_data_format('channels_last')
with strategy.scope():
network = Darknet.Darknet(model_id="darknet53", min_size=3, max_size=5)
network = darknet.Darknet(model_id="darknet53", min_size=3, max_size=5)
_ = network(inputs)
@parameterized.parameters(1, 3, 4)
......@@ -79,7 +78,7 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
tf.keras.backend.set_image_data_format('channels_last')
input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, input_dim])
network = Darknet.Darknet(model_id="darknet53", min_level=3, max_level=5, input_specs=input_specs)
network = darknet.Darknet(model_id="darknet53", min_level=3, max_level=5, input_specs=input_specs)
inputs = tf.keras.Input(shape=(224, 224, input_dim), batch_size=1)
_ = network(inputs)
......@@ -98,13 +97,13 @@ class DarkNetTest(parameterized.TestCase, tf.test.TestCase):
kernel_regularizer=None,
bias_regularizer=None,
)
network = Darknet.Darknet(**kwargs)
network = darknet.Darknet(**kwargs)
expected_config = dict(kwargs)
self.assertEqual(network.get_config(), expected_config)
# Create another network object from the first object's config.
new_network = Darknet.Darknet.from_config(network.get_config())
new_network = darknet.Darknet.from_config(network.get_config())
# Validate that the config can be forced to JSON.
_ = new_network.to_json()
......
import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
from .dark_conv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
......
import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
from .dark_conv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
......
"""Contains common building blocks for yolo neural networks."""
import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
from .dark_conv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
......
......@@ -4,7 +4,7 @@ from functools import partial
import tensorflow as tf
import tensorflow.keras as ks
import tensorflow.keras.backend as K
from ._Identity import Identity
from .identity import Identity
from official.vision.beta.projects.yolo.modeling.functions.mish_activation import mish
......
"""Contains common building blocks for yolo neural networks."""
import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
from ._Identity import Identity
from .dark_conv import DarkConv
from .identity import Identity
@ks.utils.register_keras_serializable(package='yolo')
......
"""Contains common building blocks for yolo neural networks."""
import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
from .dark_conv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
......
......@@ -14,8 +14,6 @@ class DarkTinyTest(tf.test.TestCase, parameterized.TestCase):
x = ks.Input(shape=(width, height, filters))
test_layer = DarkTiny(filters=filters, strides=strides)
outx = test_layer(x)
print(outx)
print(outx.shape.as_list())
self.assertEqual(width % strides, 0, msg="width % strides != 0")
self.assertEqual(height % strides, 0, msg="height % strides != 0")
self.assertAllEqual(outx.shape.as_list(),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment