Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
99cb3f70
Commit
99cb3f70
authored
Aug 02, 2017
by
Marianne Linhares Monteiro
Committed by
GitHub
Aug 02, 2017
Browse files
adjust_learning_rate -> learning_rate
parent
0c8dbe54
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
7 additions
and
7 deletions
+7
-7
tutorials/image/cifar10_estimator/cifar10_main.py
tutorials/image/cifar10_estimator/cifar10_main.py
+7
-7
No files found.
tutorials/image/cifar10_estimator/cifar10_main.py
View file @
99cb3f70
...
@@ -73,10 +73,11 @@ tf.flags.DEFINE_float('momentum', 0.9, 'Momentum for MomentumOptimizer.')
...
@@ -73,10 +73,11 @@ tf.flags.DEFINE_float('momentum', 0.9, 'Momentum for MomentumOptimizer.')
tf
.
flags
.
DEFINE_float
(
'weight_decay'
,
2e-4
,
'Weight decay for convolutions.'
)
tf
.
flags
.
DEFINE_float
(
'weight_decay'
,
2e-4
,
'Weight decay for convolutions.'
)
tf
.
flags
.
DEFINE_float
(
'adjust_learning_rate'
,
1
,
tf
.
flags
.
DEFINE_float
(
'learning_rate'
,
0.1
,
"""This value will be multiplied by the learning rate.
"""This is the inital learning rate value.
By default the learning rate is
The learning rate will decrease during training.
[0.1, 0.001, 0.0001, 0.00002]
For more details check the model_fn implementation
in this file.
"""
.)
"""
.)
tf
.
flags
.
DEFINE_boolean
(
'use_distortion_for_training'
,
True
,
tf
.
flags
.
DEFINE_boolean
(
'use_distortion_for_training'
,
True
,
...
@@ -316,9 +317,8 @@ def _resnet_model_fn(features, labels, mode):
...
@@ -316,9 +317,8 @@ def _resnet_model_fn(features, labels, mode):
num_batches_per_epoch
*
x
num_batches_per_epoch
*
x
for
x
in
np
.
array
([
82
,
123
,
300
],
dtype
=
np
.
int64
)
for
x
in
np
.
array
([
82
,
123
,
300
],
dtype
=
np
.
int64
)
]
]
staged_lr
=
[
staged_lr
=
[
FLAGS
.
learning_rate
*
x
FLAGS
.
adjust_learning_rate
*
x
for
x
in
[
1
,
0.1
,
0.01
,
0.002
]]
for
x
in
[
0.1
,
0.01
,
0.001
,
0.0002
]]
learning_rate
=
tf
.
train
.
piecewise_constant
(
tf
.
train
.
get_global_step
(),
learning_rate
=
tf
.
train
.
piecewise_constant
(
tf
.
train
.
get_global_step
(),
boundaries
,
staged_lr
)
boundaries
,
staged_lr
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment