Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
999fae62
"examples/vscode:/vscode.git/clone" did not exist on "cd0a4a82cf8625b96e2889afee2fce5811b35c05"
Commit
999fae62
authored
Aug 12, 2020
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Aug 12, 2020
Browse files
Internal change
PiperOrigin-RevId: 326286926
parent
94561082
Changes
205
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
73 additions
and
64 deletions
+73
-64
official/nlp/albert/run_squad.py
official/nlp/albert/run_squad.py
+1
-0
official/nlp/albert/tf2_albert_encoder_checkpoint_converter.py
...ial/nlp/albert/tf2_albert_encoder_checkpoint_converter.py
+1
-0
official/nlp/bert/bert_models_test.py
official/nlp/bert/bert_models_test.py
+3
-1
official/nlp/bert/common_flags.py
official/nlp/bert/common_flags.py
+4
-3
official/nlp/bert/configs.py
official/nlp/bert/configs.py
+1
-1
official/nlp/bert/export_tfhub.py
official/nlp/bert/export_tfhub.py
+1
-0
official/nlp/bert/export_tfhub_test.py
official/nlp/bert/export_tfhub_test.py
+1
-0
official/nlp/bert/model_saving_utils.py
official/nlp/bert/model_saving_utils.py
+7
-7
official/nlp/bert/model_training_utils.py
official/nlp/bert/model_training_utils.py
+3
-4
official/nlp/bert/model_training_utils_test.py
official/nlp/bert/model_training_utils_test.py
+12
-10
official/nlp/bert/run_classifier.py
official/nlp/bert/run_classifier.py
+1
-0
official/nlp/bert/run_pretraining.py
official/nlp/bert/run_pretraining.py
+1
-0
official/nlp/bert/run_squad.py
official/nlp/bert/run_squad.py
+1
-0
official/nlp/bert/run_squad_helper.py
official/nlp/bert/run_squad_helper.py
+27
-32
official/nlp/bert/serving.py
official/nlp/bert/serving.py
+5
-5
official/nlp/bert/squad_evaluate_v1_1.py
official/nlp/bert/squad_evaluate_v1_1.py
+1
-0
official/nlp/bert/tf1_checkpoint_converter_lib.py
official/nlp/bert/tf1_checkpoint_converter_lib.py
+0
-1
official/nlp/bert/tf2_encoder_checkpoint_converter.py
official/nlp/bert/tf2_encoder_checkpoint_converter.py
+1
-0
official/nlp/data/create_finetuning_data.py
official/nlp/data/create_finetuning_data.py
+1
-0
official/nlp/data/create_pretraining_data.py
official/nlp/data/create_pretraining_data.py
+1
-0
No files found.
official/nlp/albert/run_squad.py
View file @
999fae62
...
@@ -22,6 +22,7 @@ import json
...
@@ -22,6 +22,7 @@ import json
import
os
import
os
import
time
import
time
# Import libraries
from
absl
import
app
from
absl
import
app
from
absl
import
flags
from
absl
import
flags
from
absl
import
logging
from
absl
import
logging
...
...
official/nlp/albert/tf2_albert_encoder_checkpoint_converter.py
View file @
999fae62
...
@@ -23,6 +23,7 @@ from __future__ import print_function
...
@@ -23,6 +23,7 @@ from __future__ import print_function
import
os
import
os
# Import libraries
from
absl
import
app
from
absl
import
app
from
absl
import
flags
from
absl
import
flags
...
...
official/nlp/bert/bert_models_test.py
View file @
999fae62
...
@@ -51,7 +51,9 @@ class BertModelsTest(tf.test.TestCase):
...
@@ -51,7 +51,9 @@ class BertModelsTest(tf.test.TestCase):
self
.
assertIsInstance
(
encoder
,
networks
.
TransformerEncoder
)
self
.
assertIsInstance
(
encoder
,
networks
.
TransformerEncoder
)
# model has one scalar output: loss value.
# model has one scalar output: loss value.
self
.
assertEqual
(
model
.
output
.
shape
.
as_list
(),
[
None
,])
self
.
assertEqual
(
model
.
output
.
shape
.
as_list
(),
[
None
,
])
# Expect two output from encoder: sequence and classification output.
# Expect two output from encoder: sequence and classification output.
self
.
assertIsInstance
(
encoder
.
output
,
list
)
self
.
assertIsInstance
(
encoder
.
output
,
list
)
...
...
official/nlp/bert/common_flags.py
View file @
999fae62
...
@@ -73,9 +73,10 @@ def define_common_bert_flags():
...
@@ -73,9 +73,10 @@ def define_common_bert_flags():
'If specified, init_checkpoint flag should not be used.'
)
'If specified, init_checkpoint flag should not be used.'
)
flags
.
DEFINE_bool
(
'hub_module_trainable'
,
True
,
flags
.
DEFINE_bool
(
'hub_module_trainable'
,
True
,
'True to make keras layers in the hub module trainable.'
)
'True to make keras layers in the hub module trainable.'
)
flags
.
DEFINE_string
(
'sub_model_export_name'
,
None
,
flags
.
DEFINE_string
(
'If set, `sub_model` checkpoints are exported into '
'sub_model_export_name'
,
None
,
'FLAGS.model_dir/FLAGS.sub_model_export_name.'
)
'If set, `sub_model` checkpoints are exported into '
'FLAGS.model_dir/FLAGS.sub_model_export_name.'
)
flags_core
.
define_log_steps
()
flags_core
.
define_log_steps
()
...
...
official/nlp/bert/configs.py
View file @
999fae62
...
@@ -20,6 +20,7 @@ from __future__ import print_function
...
@@ -20,6 +20,7 @@ from __future__ import print_function
import
copy
import
copy
import
json
import
json
import
six
import
six
import
tensorflow
as
tf
import
tensorflow
as
tf
...
@@ -105,4 +106,3 @@ class BertConfig(object):
...
@@ -105,4 +106,3 @@ class BertConfig(object):
def
to_json_string
(
self
):
def
to_json_string
(
self
):
"""Serializes this instance to a JSON string."""
"""Serializes this instance to a JSON string."""
return
json
.
dumps
(
self
.
to_dict
(),
indent
=
2
,
sort_keys
=
True
)
+
"
\n
"
return
json
.
dumps
(
self
.
to_dict
(),
indent
=
2
,
sort_keys
=
True
)
+
"
\n
"
official/nlp/bert/export_tfhub.py
View file @
999fae62
...
@@ -18,6 +18,7 @@ from __future__ import division
...
@@ -18,6 +18,7 @@ from __future__ import division
# from __future__ import google_type_annotations
# from __future__ import google_type_annotations
from
__future__
import
print_function
from
__future__
import
print_function
# Import libraries
from
absl
import
app
from
absl
import
app
from
absl
import
flags
from
absl
import
flags
from
absl
import
logging
from
absl
import
logging
...
...
official/nlp/bert/export_tfhub_test.py
View file @
999fae62
...
@@ -91,6 +91,7 @@ class ExportTfhubTest(tf.test.TestCase):
...
@@ -91,6 +91,7 @@ class ExportTfhubTest(tf.test.TestCase):
outputs
=
np
.
concatenate
(
outputs
=
np
.
concatenate
(
[
hub_layer
(
inputs
,
training
=
training
)[
0
]
for
_
in
range
(
num_runs
)])
[
hub_layer
(
inputs
,
training
=
training
)[
0
]
for
_
in
range
(
num_runs
)])
return
np
.
mean
(
np
.
std
(
outputs
,
axis
=
0
))
return
np
.
mean
(
np
.
std
(
outputs
,
axis
=
0
))
self
.
assertLess
(
_dropout_mean_stddev
(
training
=
False
),
1e-6
)
self
.
assertLess
(
_dropout_mean_stddev
(
training
=
False
),
1e-6
)
self
.
assertGreater
(
_dropout_mean_stddev
(
training
=
True
),
1e-3
)
self
.
assertGreater
(
_dropout_mean_stddev
(
training
=
True
),
1e-3
)
...
...
official/nlp/bert/model_saving_utils.py
View file @
999fae62
...
@@ -38,13 +38,13 @@ def export_bert_model(model_export_path: typing.Text,
...
@@ -38,13 +38,13 @@ def export_bert_model(model_export_path: typing.Text,
checkpoint_dir: Path from which model weights will be loaded, if
checkpoint_dir: Path from which model weights will be loaded, if
specified.
specified.
restore_model_using_load_weights: Whether to use checkpoint.restore() API
restore_model_using_load_weights: Whether to use checkpoint.restore() API
for custom checkpoint or to use model.load_weights() API.
for custom checkpoint or to use model.load_weights() API.
There are 2
There are 2
different ways to save checkpoints. One is using
different ways to save checkpoints. One is using
tf.train.Checkpoint and
tf.train.Checkpoint and
another is using Keras model.save_weights().
another is using Keras model.save_weights().
Custom training loop
Custom training loop
implementation uses tf.train.Checkpoint API
implementation uses tf.train.Checkpoint API
and Keras ModelCheckpoint
and Keras ModelCheckpoint
callback internally uses model.save_weights()
callback internally uses model.save_weights()
API. Since these two API's
API. Since these two API's
cannot be used toghether, model loading logic
cannot be used toghether, model loading logic
must be take into account
must be take into account
how model checkpoint was saved.
how model checkpoint was saved.
Raises:
Raises:
ValueError when either model_export_path or model is not specified.
ValueError when either model_export_path or model is not specified.
...
...
official/nlp/bert/model_training_utils.py
View file @
999fae62
...
@@ -164,8 +164,8 @@ def run_customized_training_loop(
...
@@ -164,8 +164,8 @@ def run_customized_training_loop(
custom_callbacks: A list of Keras Callbacks objects to run during
custom_callbacks: A list of Keras Callbacks objects to run during
training. More specifically, `on_train_begin(), on_train_end(),
training. More specifically, `on_train_begin(), on_train_end(),
on_batch_begin()`, `on_batch_end()`, `on_epoch_begin()`,
on_batch_begin()`, `on_batch_end()`, `on_epoch_begin()`,
`on_epoch_end()` methods are invoked during training.
`on_epoch_end()` methods are invoked during training.
Note that some
Note that some
metrics may be missing from `logs`.
metrics may be missing from `logs`.
run_eagerly: Whether to run model training in pure eager execution. This
run_eagerly: Whether to run model training in pure eager execution. This
should be disable for TPUStrategy.
should be disable for TPUStrategy.
sub_model_export_name: If not None, will export `sub_model` returned by
sub_model_export_name: If not None, will export `sub_model` returned by
...
@@ -458,8 +458,7 @@ def run_customized_training_loop(
...
@@ -458,8 +458,7 @@ def run_customized_training_loop(
callback_list
.
on_train_begin
()
callback_list
.
on_train_begin
()
while
current_step
<
total_training_steps
and
not
model
.
stop_training
:
while
current_step
<
total_training_steps
and
not
model
.
stop_training
:
if
current_step
%
steps_per_epoch
==
0
:
if
current_step
%
steps_per_epoch
==
0
:
callback_list
.
on_epoch_begin
(
callback_list
.
on_epoch_begin
(
int
(
current_step
/
steps_per_epoch
)
+
1
)
int
(
current_step
/
steps_per_epoch
)
+
1
)
# Training loss/metric are taking average over steps inside micro
# Training loss/metric are taking average over steps inside micro
# training loop. We reset the their values before each round.
# training loop. We reset the their values before each round.
...
...
official/nlp/bert/model_training_utils_test.py
View file @
999fae62
...
@@ -139,9 +139,9 @@ class RecordingCallback(tf.keras.callbacks.Callback):
...
@@ -139,9 +139,9 @@ class RecordingCallback(tf.keras.callbacks.Callback):
def
__init__
(
self
):
def
__init__
(
self
):
self
.
batch_begin
=
[]
# (batch, logs)
self
.
batch_begin
=
[]
# (batch, logs)
self
.
batch_end
=
[]
# (batch, logs)
self
.
batch_end
=
[]
# (batch, logs)
self
.
epoch_begin
=
[]
# (epoch, logs)
self
.
epoch_begin
=
[]
# (epoch, logs)
self
.
epoch_end
=
[]
# (epoch, logs)
self
.
epoch_end
=
[]
# (epoch, logs)
def
on_batch_begin
(
self
,
batch
,
logs
=
None
):
def
on_batch_begin
(
self
,
batch
,
logs
=
None
):
self
.
batch_begin
.
append
((
batch
,
logs
))
self
.
batch_begin
.
append
((
batch
,
logs
))
...
@@ -212,17 +212,19 @@ class ModelTrainingUtilsTest(tf.test.TestCase, parameterized.TestCase):
...
@@ -212,17 +212,19 @@ class ModelTrainingUtilsTest(tf.test.TestCase, parameterized.TestCase):
# Two checkpoints should be saved after two epochs.
# Two checkpoints should be saved after two epochs.
files
=
map
(
os
.
path
.
basename
,
files
=
map
(
os
.
path
.
basename
,
tf
.
io
.
gfile
.
glob
(
os
.
path
.
join
(
model_dir
,
'ctl_step_*index'
)))
tf
.
io
.
gfile
.
glob
(
os
.
path
.
join
(
model_dir
,
'ctl_step_*index'
)))
self
.
assertCountEqual
(
[
'ctl_step_20.ckpt-1.index'
,
self
.
assertCountEqual
(
'ctl_step_40.ckpt-2.index'
],
files
)
[
'ctl_step_20.ckpt-1.index'
,
'ctl_step_40.ckpt-2.index'
],
files
)
# Three submodel checkpoints should be saved after two epochs (one after
# Three submodel checkpoints should be saved after two epochs (one after
# each epoch plus one final).
# each epoch plus one final).
files
=
map
(
os
.
path
.
basename
,
files
=
map
(
tf
.
io
.
gfile
.
glob
(
os
.
path
.
join
(
model_dir
,
os
.
path
.
basename
,
'my_submodel_name*index'
)))
tf
.
io
.
gfile
.
glob
(
os
.
path
.
join
(
model_dir
,
'my_submodel_name*index'
)))
self
.
assertCountEqual
([
'my_submodel_name.ckpt-3.index'
,
self
.
assertCountEqual
([
'my_submodel_name_step_20.ckpt-1.index'
,
'my_submodel_name.ckpt-3.index'
,
'my_submodel_name_step_40.ckpt-2.index'
],
files
)
'my_submodel_name_step_20.ckpt-1.index'
,
'my_submodel_name_step_40.ckpt-2.index'
],
files
)
self
.
assertNotEmpty
(
self
.
assertNotEmpty
(
tf
.
io
.
gfile
.
glob
(
tf
.
io
.
gfile
.
glob
(
...
...
official/nlp/bert/run_classifier.py
View file @
999fae62
...
@@ -22,6 +22,7 @@ import json
...
@@ -22,6 +22,7 @@ import json
import
math
import
math
import
os
import
os
# Import libraries
from
absl
import
app
from
absl
import
app
from
absl
import
flags
from
absl
import
flags
from
absl
import
logging
from
absl
import
logging
...
...
official/nlp/bert/run_pretraining.py
View file @
999fae62
...
@@ -17,6 +17,7 @@ from __future__ import absolute_import
...
@@ -17,6 +17,7 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
print_function
# Import libraries
from
absl
import
app
from
absl
import
app
from
absl
import
flags
from
absl
import
flags
from
absl
import
logging
from
absl
import
logging
...
...
official/nlp/bert/run_squad.py
View file @
999fae62
...
@@ -22,6 +22,7 @@ import json
...
@@ -22,6 +22,7 @@ import json
import
os
import
os
import
time
import
time
# Import libraries
from
absl
import
app
from
absl
import
app
from
absl
import
flags
from
absl
import
flags
from
absl
import
logging
from
absl
import
logging
...
...
official/nlp/bert/run_squad_helper.py
View file @
999fae62
...
@@ -20,6 +20,7 @@ from __future__ import print_function
...
@@ -20,6 +20,7 @@ from __future__ import print_function
import
collections
import
collections
import
json
import
json
import
os
import
os
from
absl
import
flags
from
absl
import
flags
from
absl
import
logging
from
absl
import
logging
import
tensorflow
as
tf
import
tensorflow
as
tf
...
@@ -39,10 +40,10 @@ from official.utils.misc import keras_utils
...
@@ -39,10 +40,10 @@ from official.utils.misc import keras_utils
def
define_common_squad_flags
():
def
define_common_squad_flags
():
"""Defines common flags used by SQuAD tasks."""
"""Defines common flags used by SQuAD tasks."""
flags
.
DEFINE_enum
(
flags
.
DEFINE_enum
(
'mode'
,
'train_and_eval'
,
'mode'
,
'train_and_eval'
,
[
[
'train_and_eval'
,
'train_and_predict'
,
'train_and_eval'
,
'train_and_predict'
,
'train'
,
'eval'
,
'predict'
,
'train'
,
'eval'
,
'predict'
,
'export_only'
],
'export_only'
'One of {"train_and_eval", "train_and_predict", '
],
'One of {"train_and_eval", "train_and_predict", '
'"train", "eval", "predict", "export_only"}. '
'"train", "eval", "predict", "export_only"}. '
'`train_and_eval`: train & predict to json files & compute eval metrics. '
'`train_and_eval`: train & predict to json files & compute eval metrics. '
'`train_and_predict`: train & predict to json files. '
'`train_and_predict`: train & predict to json files. '
...
@@ -60,12 +61,12 @@ def define_common_squad_flags():
...
@@ -60,12 +61,12 @@ def define_common_squad_flags():
# Model training specific flags.
# Model training specific flags.
flags
.
DEFINE_integer
(
'train_batch_size'
,
32
,
'Total batch size for training.'
)
flags
.
DEFINE_integer
(
'train_batch_size'
,
32
,
'Total batch size for training.'
)
# Predict processing related.
# Predict processing related.
flags
.
DEFINE_string
(
'predict_file'
,
None
,
flags
.
DEFINE_string
(
'SQuAD prediction json file path. '
'predict_file'
,
None
,
'SQuAD prediction json file path. '
'`predict` mode supports multiple files: one can use '
'`predict` mode supports multiple files: one can use '
'wildcard to specify multiple files and it can also be '
'wildcard to specify multiple files and it can also be '
'multiple file patterns separated by comma. Note that '
'multiple file patterns separated by comma. Note that '
'`eval` mode only supports a single predict file.'
)
'`eval` mode only supports a single predict file.'
)
flags
.
DEFINE_bool
(
flags
.
DEFINE_bool
(
'do_lower_case'
,
True
,
'do_lower_case'
,
True
,
'Whether to lower case the input text. Should be True for uncased '
'Whether to lower case the input text. Should be True for uncased '
...
@@ -97,10 +98,7 @@ def define_common_squad_flags():
...
@@ -97,10 +98,7 @@ def define_common_squad_flags():
FLAGS
=
flags
.
FLAGS
FLAGS
=
flags
.
FLAGS
def
squad_loss_fn
(
start_positions
,
def
squad_loss_fn
(
start_positions
,
end_positions
,
start_logits
,
end_logits
):
end_positions
,
start_logits
,
end_logits
):
"""Returns sparse categorical crossentropy for start/end logits."""
"""Returns sparse categorical crossentropy for start/end logits."""
start_loss
=
tf
.
keras
.
losses
.
sparse_categorical_crossentropy
(
start_loss
=
tf
.
keras
.
losses
.
sparse_categorical_crossentropy
(
start_positions
,
start_logits
,
from_logits
=
True
)
start_positions
,
start_logits
,
from_logits
=
True
)
...
@@ -118,11 +116,8 @@ def get_loss_fn():
...
@@ -118,11 +116,8 @@ def get_loss_fn():
start_positions
=
labels
[
'start_positions'
]
start_positions
=
labels
[
'start_positions'
]
end_positions
=
labels
[
'end_positions'
]
end_positions
=
labels
[
'end_positions'
]
start_logits
,
end_logits
=
model_outputs
start_logits
,
end_logits
=
model_outputs
return
squad_loss_fn
(
return
squad_loss_fn
(
start_positions
,
end_positions
,
start_logits
,
start_positions
,
end_logits
)
end_positions
,
start_logits
,
end_logits
)
return
_loss_fn
return
_loss_fn
...
@@ -182,11 +177,8 @@ def get_squad_model_to_predict(strategy, bert_config, checkpoint_path,
...
@@ -182,11 +177,8 @@ def get_squad_model_to_predict(strategy, bert_config, checkpoint_path,
return
squad_model
return
squad_model
def
predict_squad_customized
(
strategy
,
def
predict_squad_customized
(
strategy
,
input_meta_data
,
predict_tfrecord_path
,
input_meta_data
,
num_steps
,
squad_model
):
predict_tfrecord_path
,
num_steps
,
squad_model
):
"""Make predictions using a Bert-based squad model."""
"""Make predictions using a Bert-based squad model."""
predict_dataset_fn
=
get_dataset_fn
(
predict_dataset_fn
=
get_dataset_fn
(
predict_tfrecord_path
,
predict_tfrecord_path
,
...
@@ -259,8 +251,7 @@ def train_squad(strategy,
...
@@ -259,8 +251,7 @@ def train_squad(strategy,
hub_module_trainable
=
FLAGS
.
hub_module_trainable
)
hub_module_trainable
=
FLAGS
.
hub_module_trainable
)
optimizer
=
optimization
.
create_optimizer
(
FLAGS
.
learning_rate
,
optimizer
=
optimization
.
create_optimizer
(
FLAGS
.
learning_rate
,
steps_per_epoch
*
epochs
,
steps_per_epoch
*
epochs
,
warmup_steps
,
warmup_steps
,
FLAGS
.
end_lr
,
FLAGS
.
end_lr
,
FLAGS
.
optimizer_type
)
FLAGS
.
optimizer_type
)
squad_model
.
optimizer
=
performance
.
configure_optimizer
(
squad_model
.
optimizer
=
performance
.
configure_optimizer
(
...
@@ -344,8 +335,9 @@ def prediction_output_squad(strategy, input_meta_data, tokenizer, squad_lib,
...
@@ -344,8 +335,9 @@ def prediction_output_squad(strategy, input_meta_data, tokenizer, squad_lib,
logging
.
info
(
' Batch size = %d'
,
FLAGS
.
predict_batch_size
)
logging
.
info
(
' Batch size = %d'
,
FLAGS
.
predict_batch_size
)
num_steps
=
int
(
dataset_size
/
FLAGS
.
predict_batch_size
)
num_steps
=
int
(
dataset_size
/
FLAGS
.
predict_batch_size
)
all_results
=
predict_squad_customized
(
all_results
=
predict_squad_customized
(
strategy
,
input_meta_data
,
strategy
,
input_meta_data
,
eval_writer
.
filename
,
num_steps
,
squad_model
)
eval_writer
.
filename
,
num_steps
,
squad_model
)
all_predictions
,
all_nbest_json
,
scores_diff_json
=
(
all_predictions
,
all_nbest_json
,
scores_diff_json
=
(
squad_lib
.
postprocess_output
(
squad_lib
.
postprocess_output
(
...
@@ -362,8 +354,12 @@ def prediction_output_squad(strategy, input_meta_data, tokenizer, squad_lib,
...
@@ -362,8 +354,12 @@ def prediction_output_squad(strategy, input_meta_data, tokenizer, squad_lib,
return
all_predictions
,
all_nbest_json
,
scores_diff_json
return
all_predictions
,
all_nbest_json
,
scores_diff_json
def
dump_to_files
(
all_predictions
,
all_nbest_json
,
scores_diff_json
,
def
dump_to_files
(
all_predictions
,
squad_lib
,
version_2_with_negative
,
file_prefix
=
''
):
all_nbest_json
,
scores_diff_json
,
squad_lib
,
version_2_with_negative
,
file_prefix
=
''
):
"""Save output to json files."""
"""Save output to json files."""
output_prediction_file
=
os
.
path
.
join
(
FLAGS
.
model_dir
,
output_prediction_file
=
os
.
path
.
join
(
FLAGS
.
model_dir
,
'%spredictions.json'
%
file_prefix
)
'%spredictions.json'
%
file_prefix
)
...
@@ -452,8 +448,7 @@ def eval_squad(strategy,
...
@@ -452,8 +448,7 @@ def eval_squad(strategy,
dataset_json
=
json
.
load
(
reader
)
dataset_json
=
json
.
load
(
reader
)
pred_dataset
=
dataset_json
[
'data'
]
pred_dataset
=
dataset_json
[
'data'
]
if
input_meta_data
.
get
(
'version_2_with_negative'
,
False
):
if
input_meta_data
.
get
(
'version_2_with_negative'
,
False
):
eval_metrics
=
squad_evaluate_v2_0
.
evaluate
(
pred_dataset
,
eval_metrics
=
squad_evaluate_v2_0
.
evaluate
(
pred_dataset
,
all_predictions
,
all_predictions
,
scores_diff_json
)
scores_diff_json
)
else
:
else
:
eval_metrics
=
squad_evaluate_v1_1
.
evaluate
(
pred_dataset
,
all_predictions
)
eval_metrics
=
squad_evaluate_v1_1
.
evaluate
(
pred_dataset
,
all_predictions
)
...
...
official/nlp/bert/serving.py
View file @
999fae62
...
@@ -22,11 +22,11 @@ import tensorflow as tf
...
@@ -22,11 +22,11 @@ import tensorflow as tf
from
official.nlp.bert
import
bert_models
from
official.nlp.bert
import
bert_models
from
official.nlp.bert
import
configs
from
official.nlp.bert
import
configs
flags
.
DEFINE_integer
(
"sequence_length"
,
None
,
flags
.
DEFINE_integer
(
"Sequence length to parse the tf.Example. If "
"sequence_length"
,
None
,
"Sequence length to parse the tf.Example. If "
"sequence_length > 0, add a signature for serialized "
"sequence_length > 0, add a signature for serialized "
"tf.Example and define the parsing specification by the "
"tf.Example and define the parsing specification by the "
"sequence_length."
)
"sequence_length."
)
flags
.
DEFINE_string
(
"bert_config_file"
,
None
,
flags
.
DEFINE_string
(
"bert_config_file"
,
None
,
"Bert configuration file to define core bert layers."
)
"Bert configuration file to define core bert layers."
)
flags
.
DEFINE_string
(
"model_checkpoint_path"
,
None
,
flags
.
DEFINE_string
(
"model_checkpoint_path"
,
None
,
...
...
official/nlp/bert/squad_evaluate_v1_1.py
View file @
999fae62
...
@@ -31,6 +31,7 @@ import re
...
@@ -31,6 +31,7 @@ import re
import
string
import
string
# pylint: disable=g-bad-import-order
# pylint: disable=g-bad-import-order
from
absl
import
logging
from
absl
import
logging
# pylint: enable=g-bad-import-order
# pylint: enable=g-bad-import-order
...
...
official/nlp/bert/tf1_checkpoint_converter_lib.py
View file @
999fae62
...
@@ -164,7 +164,6 @@ def convert(checkpoint_from_path,
...
@@ -164,7 +164,6 @@ def convert(checkpoint_from_path,
new_shape
=
_get_new_shape
(
new_var_name
,
tensor
.
shape
,
num_heads
)
new_shape
=
_get_new_shape
(
new_var_name
,
tensor
.
shape
,
num_heads
)
if
new_shape
:
if
new_shape
:
tf
.
logging
.
info
(
"Veriable %s has a shape change from %s to %s"
,
tf
.
logging
.
info
(
"Veriable %s has a shape change from %s to %s"
,
var_name
,
tensor
.
shape
,
new_shape
)
var_name
,
tensor
.
shape
,
new_shape
)
tensor
=
np
.
reshape
(
tensor
,
new_shape
)
tensor
=
np
.
reshape
(
tensor
,
new_shape
)
...
...
official/nlp/bert/tf2_encoder_checkpoint_converter.py
View file @
999fae62
...
@@ -49,6 +49,7 @@ def _create_bert_model(cfg):
...
@@ -49,6 +49,7 @@ def _create_bert_model(cfg):
Args:
Args:
cfg: A `BertConfig` to create the core model.
cfg: A `BertConfig` to create the core model.
Returns:
Returns:
A TransformerEncoder netowork.
A TransformerEncoder netowork.
"""
"""
...
...
official/nlp/data/create_finetuning_data.py
View file @
999fae62
...
@@ -22,6 +22,7 @@ import functools
...
@@ -22,6 +22,7 @@ import functools
import
json
import
json
import
os
import
os
# Import libraries
from
absl
import
app
from
absl
import
app
from
absl
import
flags
from
absl
import
flags
import
tensorflow
as
tf
import
tensorflow
as
tf
...
...
official/nlp/data/create_pretraining_data.py
View file @
999fae62
...
@@ -21,6 +21,7 @@ import collections
...
@@ -21,6 +21,7 @@ import collections
import
itertools
import
itertools
import
random
import
random
# Import libraries
from
absl
import
app
from
absl
import
app
from
absl
import
flags
from
absl
import
flags
from
absl
import
logging
from
absl
import
logging
...
...
Prev
1
2
3
4
5
6
…
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment