Commit 99462f6d authored by Neal Wu's avatar Neal Wu Committed by GitHub
Browse files

Merge pull request #760 from stakemura/master

Python 3 support for some inception scripts
parents 4de34a4c 3e93722a
......@@ -247,7 +247,7 @@ def _process_image_files_batch(coder, thread_index, ranges, name, filenames,
num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0]
counter = 0
for s in xrange(num_shards_per_batch):
for s in range(num_shards_per_batch):
# Generate a sharded version of the file name, e.g. 'train-00002-of-00010'
shard = thread_index * num_shards_per_batch + s
output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards)
......@@ -300,7 +300,7 @@ def _process_image_files(name, filenames, texts, labels, num_shards):
# Break all images into batches with a [ranges[i][0], ranges[i][1]].
spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int)
ranges = []
for i in xrange(len(spacing) - 1):
for i in range(len(spacing) - 1):
ranges.append([spacing[i], spacing[i+1]])
# Launch a thread for each batch.
......@@ -314,7 +314,7 @@ def _process_image_files(name, filenames, texts, labels, num_shards):
coder = ImageCoder()
threads = []
for thread_index in xrange(len(ranges)):
for thread_index in range(len(ranges)):
args = (coder, thread_index, ranges, name, filenames,
texts, labels, num_shards)
t = threading.Thread(target=_process_image_files_batch, args=args)
......@@ -386,7 +386,7 @@ def _find_image_files(data_dir, labels_file):
# Shuffle the ordering of all image files in order to guarantee
# random ordering of the images with respect to label in the
# saved TFRecord files. Make the randomization repeatable.
shuffled_index = range(len(filenames))
shuffled_index = list(range(len(filenames)))
random.seed(12345)
random.shuffle(shuffled_index)
......
......@@ -370,7 +370,7 @@ def _process_image_files_batch(coder, thread_index, ranges, name, filenames,
num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0]
counter = 0
for s in xrange(num_shards_per_batch):
for s in range(num_shards_per_batch):
# Generate a sharded version of the file name, e.g. 'train-00002-of-00010'
shard = thread_index * num_shards_per_batch + s
output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards)
......@@ -434,7 +434,7 @@ def _process_image_files(name, filenames, synsets, labels, humans,
spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int)
ranges = []
threads = []
for i in xrange(len(spacing) - 1):
for i in range(len(spacing) - 1):
ranges.append([spacing[i], spacing[i+1]])
# Launch a thread for each batch.
......@@ -448,7 +448,7 @@ def _process_image_files(name, filenames, synsets, labels, humans,
coder = ImageCoder()
threads = []
for thread_index in xrange(len(ranges)):
for thread_index in range(len(ranges)):
args = (coder, thread_index, ranges, name, filenames,
synsets, labels, humans, bboxes, num_shards)
t = threading.Thread(target=_process_image_files_batch, args=args)
......@@ -524,7 +524,7 @@ def _find_image_files(data_dir, labels_file):
# Shuffle the ordering of all image files in order to guarantee
# random ordering of the images with respect to label in the
# saved TFRecord files. Make the randomization repeatable.
shuffled_index = range(len(filenames))
shuffled_index = list(range(len(filenames)))
random.seed(12345)
random.shuffle(shuffled_index)
......
......@@ -72,7 +72,7 @@ if __name__ == '__main__':
os.makedirs(labeled_data_dir)
# Move all of the image to the appropriate sub-directory.
for i in xrange(len(labels)):
for i in range(len(labels)):
basename = 'ILSVRC2012_val_000%.5d.JPEG' % (i + 1)
original_filename = os.path.join(data_dir, basename)
if not os.path.exists(original_filename):
......
......@@ -128,7 +128,7 @@ def ProcessXMLAnnotation(xml_file):
num_boxes = FindNumberBoundingBoxes(root)
boxes = []
for index in xrange(num_boxes):
for index in range(num_boxes):
box = BoundingBox()
# Grab the 'index' annotation.
box.xmin = GetInt('xmin', root, index)
......
......@@ -229,7 +229,7 @@ def train(dataset):
# Calculate the gradients for each model tower.
tower_grads = []
reuse_variables = None
for i in xrange(FLAGS.num_gpus):
for i in range(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (inception.TOWER_NAME, i)) as scope:
# Force all Variables to reside on the CPU.
......@@ -333,7 +333,7 @@ def train(dataset):
FLAGS.train_dir,
graph_def=sess.graph.as_graph_def(add_shapes=True))
for step in xrange(FLAGS.max_steps):
for step in range(FLAGS.max_steps):
start_time = time.time()
_, loss_value = sess.run([train_op, loss])
duration = time.time() - start_time
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment