Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
92221745
Unverified
Commit
92221745
authored
Mar 11, 2022
by
Srihari Humbarwadi
Committed by
GitHub
Mar 11, 2022
Browse files
Merge pull request #14 from srihari-humbarwadi/panoptic-deeplab-modeling
panoptic deeplab modelling
parents
229e43e8
cdd61f61
Changes
10
Show whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
1792 additions
and
0 deletions
+1792
-0
official/vision/beta/projects/panoptic_maskrcnn/configs/panoptic_deeplab.py
...ta/projects/panoptic_maskrcnn/configs/panoptic_deeplab.py
+78
-0
official/vision/beta/projects/panoptic_maskrcnn/modeling/factory.py
...ision/beta/projects/panoptic_maskrcnn/modeling/factory.py
+99
-0
official/vision/beta/projects/panoptic_maskrcnn/modeling/factory_test.py
.../beta/projects/panoptic_maskrcnn/modeling/factory_test.py
+44
-0
official/vision/beta/projects/panoptic_maskrcnn/modeling/heads/panoptic_deeplab_heads.py
...anoptic_maskrcnn/modeling/heads/panoptic_deeplab_heads.py
+418
-0
official/vision/beta/projects/panoptic_maskrcnn/modeling/heads/panoptic_deeplab_heads_test.py
...ic_maskrcnn/modeling/heads/panoptic_deeplab_heads_test.py
+100
-0
official/vision/beta/projects/panoptic_maskrcnn/modeling/layers/fusion_layers.py
...ojects/panoptic_maskrcnn/modeling/layers/fusion_layers.py
+157
-0
official/vision/beta/projects/panoptic_maskrcnn/modeling/layers/panoptic_deeplab_merge.py
...noptic_maskrcnn/modeling/layers/panoptic_deeplab_merge.py
+468
-0
official/vision/beta/projects/panoptic_maskrcnn/modeling/layers/panoptic_deeplab_merge_test.py
...c_maskrcnn/modeling/layers/panoptic_deeplab_merge_test.py
+142
-0
official/vision/beta/projects/panoptic_maskrcnn/modeling/panoptic_deeplab_model.py
...ects/panoptic_maskrcnn/modeling/panoptic_deeplab_model.py
+114
-0
official/vision/beta/projects/panoptic_maskrcnn/modeling/panoptic_deeplab_model_test.py
...panoptic_maskrcnn/modeling/panoptic_deeplab_model_test.py
+172
-0
No files found.
official/vision/beta/projects/panoptic_maskrcnn/configs/panoptic_deeplab.py
0 → 100644
View file @
92221745
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Panoptic Deeplab configuration definition."""
import
dataclasses
from
typing
import
List
,
Tuple
,
Union
from
official.modeling
import
hyperparams
from
official.vision.beta.configs
import
common
from
official.vision.beta.configs
import
backbones
from
official.vision.beta.configs
import
decoders
_COCO_INPUT_PATH_BASE
=
'coco/tfrecords'
_COCO_TRAIN_EXAMPLES
=
118287
_COCO_VAL_EXAMPLES
=
5000
@
dataclasses
.
dataclass
class
PanopticDeeplabHead
(
hyperparams
.
Config
):
"""Panoptic Deeplab head config."""
level
:
int
=
3
num_convs
:
int
=
2
num_filters
:
int
=
256
kernel_size
:
int
=
5
use_depthwise_convolution
:
bool
=
False
upsample_factor
:
int
=
1
low_level
:
Union
[
List
[
int
],
Tuple
[
int
]]
=
(
3
,
2
)
low_level_num_filters
:
Union
[
List
[
int
],
Tuple
[
int
]]
=
(
64
,
32
)
@
dataclasses
.
dataclass
class
SemanticHead
(
PanopticDeeplabHead
):
"""Semantic head config."""
prediction_kernel_size
:
int
=
1
@
dataclasses
.
dataclass
class
InstanceHead
(
PanopticDeeplabHead
):
"""Instance head config."""
prediction_kernel_size
:
int
=
1
@
dataclasses
.
dataclass
class
PanopticDeeplabPostProcessor
(
hyperparams
.
Config
):
"""Panoptic Deeplab PostProcessing config."""
center_score_threshold
:
float
=
0.1
thing_class_ids
:
List
[
int
]
=
dataclasses
.
field
(
default_factory
=
list
)
label_divisor
:
int
=
256
*
256
*
256
stuff_area_limit
:
int
=
4096
ignore_label
:
int
=
0
nms_kernel
:
int
=
41
keep_k_centers
:
int
=
400
@
dataclasses
.
dataclass
class
PanopticDeeplab
(
hyperparams
.
Config
):
"""Panoptic Deeplab model config."""
num_classes
:
int
=
0
input_size
:
List
[
int
]
=
dataclasses
.
field
(
default_factory
=
list
)
min_level
:
int
=
3
max_level
:
int
=
6
norm_activation
:
common
.
NormActivation
=
common
.
NormActivation
()
backbone
:
backbones
.
Backbone
=
backbones
.
Backbone
(
type
=
'resnet'
,
resnet
=
backbones
.
ResNet
())
decoder
:
decoders
.
Decoder
=
decoders
.
Decoder
(
type
=
'aspp'
)
semantic_head
:
SemanticHead
=
SemanticHead
()
instance_head
:
InstanceHead
=
InstanceHead
()
shared_decoder
:
bool
=
False
post_processor
:
PanopticDeeplabPostProcessor
=
PanopticDeeplabPostProcessor
()
official/vision/beta/projects/panoptic_maskrcnn/modeling/factory.py
View file @
92221745
...
@@ -16,10 +16,15 @@
...
@@ -16,10 +16,15 @@
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.vision.beta.projects.panoptic_maskrcnn.configs
import
panoptic_deeplab
as
panoptic_deeplab_cfg
from
official.vision.beta.projects.deepmac_maskrcnn.tasks
import
deep_mask_head_rcnn
from
official.vision.beta.projects.deepmac_maskrcnn.tasks
import
deep_mask_head_rcnn
from
official.vision.beta.projects.panoptic_maskrcnn.configs
import
panoptic_maskrcnn
as
panoptic_maskrcnn_cfg
from
official.vision.beta.projects.panoptic_maskrcnn.configs
import
panoptic_maskrcnn
as
panoptic_maskrcnn_cfg
from
official.vision.beta.projects.panoptic_maskrcnn.modeling
import
panoptic_deeplab_model
from
official.vision.beta.projects.panoptic_maskrcnn.modeling.heads
import
panoptic_deeplab_heads
from
official.vision.beta.projects.panoptic_maskrcnn.modeling
import
panoptic_maskrcnn_model
from
official.vision.beta.projects.panoptic_maskrcnn.modeling
import
panoptic_maskrcnn_model
from
official.vision.beta.projects.panoptic_maskrcnn.modeling.layers
import
panoptic_segmentation_generator
from
official.vision.beta.projects.panoptic_maskrcnn.modeling.layers
import
panoptic_segmentation_generator
from
official.vision.beta.projects.panoptic_maskrcnn.modeling.layers
import
panoptic_deeplab_merge
from
official.vision.modeling
import
backbones
from
official.vision.modeling
import
backbones
from
official.vision.modeling.decoders
import
factory
as
decoder_factory
from
official.vision.modeling.decoders
import
factory
as
decoder_factory
from
official.vision.modeling.heads
import
segmentation_heads
from
official.vision.modeling.heads
import
segmentation_heads
...
@@ -142,3 +147,97 @@ def build_panoptic_maskrcnn(
...
@@ -142,3 +147,97 @@ def build_panoptic_maskrcnn(
aspect_ratios
=
model_config
.
anchor
.
aspect_ratios
,
aspect_ratios
=
model_config
.
anchor
.
aspect_ratios
,
anchor_size
=
model_config
.
anchor
.
anchor_size
)
anchor_size
=
model_config
.
anchor
.
anchor_size
)
return
model
return
model
def
build_panoptic_deeplab
(
input_specs
:
tf
.
keras
.
layers
.
InputSpec
,
model_config
:
panoptic_deeplab_cfg
.
PanopticDeeplab
,
l2_regularizer
:
tf
.
keras
.
regularizers
.
Regularizer
=
None
)
->
tf
.
keras
.
Model
:
# pytype: disable=annotation-type-mismatch # typed-keras
"""Builds Panoptic Deeplab model.
Args:
input_specs: `tf.keras.layers.InputSpec` specs of the input tensor.
model_config: Config instance for the panoptic maskrcnn model.
l2_regularizer: Optional `tf.keras.regularizers.Regularizer`, if specified,
the model is built with the provided regularization layer.
Returns:
tf.keras.Model for the panoptic segmentation model.
"""
norm_activation_config
=
model_config
.
norm_activation
backbone
=
backbones
.
factory
.
build_backbone
(
input_specs
=
input_specs
,
backbone_config
=
model_config
.
backbone
,
norm_activation_config
=
norm_activation_config
,
l2_regularizer
=
l2_regularizer
)
semantic_decoder
=
decoder_factory
.
build_decoder
(
input_specs
=
backbone
.
output_specs
,
model_config
=
model_config
,
l2_regularizer
=
l2_regularizer
)
if
model_config
.
shared_decoder
:
instance_decoder
=
None
else
:
# TODO(srihari-humbarwadi): decouple semantic and
# instance decoder types
instance_decoder
=
decoder_factory
.
build_decoder
(
input_specs
=
backbone
.
output_specs
,
model_config
=
model_config
,
l2_regularizer
=
l2_regularizer
)
semantic_head_config
=
model_config
.
semantic_head
instance_head_config
=
model_config
.
instance_head
semantic_head
=
panoptic_deeplab_heads
.
SemanticHead
(
num_classes
=
model_config
.
num_classes
,
level
=
semantic_head_config
.
level
,
num_convs
=
semantic_head_config
.
num_convs
,
kernel_size
=
semantic_head_config
.
kernel_size
,
prediction_kernel_size
=
semantic_head_config
.
prediction_kernel_size
,
num_filters
=
semantic_head_config
.
num_filters
,
use_depthwise_convolution
=
semantic_head_config
.
use_depthwise_convolution
,
upsample_factor
=
semantic_head_config
.
upsample_factor
,
low_level
=
semantic_head_config
.
low_level
,
low_level_num_filters
=
semantic_head_config
.
low_level_num_filters
,
activation
=
norm_activation_config
.
activation
,
use_sync_bn
=
norm_activation_config
.
use_sync_bn
,
norm_momentum
=
norm_activation_config
.
norm_momentum
,
norm_epsilon
=
norm_activation_config
.
norm_epsilon
,
kernel_regularizer
=
l2_regularizer
)
instance_head
=
panoptic_deeplab_heads
.
InstanceHead
(
level
=
instance_head_config
.
level
,
num_convs
=
instance_head_config
.
num_convs
,
kernel_size
=
instance_head_config
.
kernel_size
,
prediction_kernel_size
=
instance_head_config
.
prediction_kernel_size
,
num_filters
=
instance_head_config
.
num_filters
,
use_depthwise_convolution
=
instance_head_config
.
use_depthwise_convolution
,
upsample_factor
=
instance_head_config
.
upsample_factor
,
low_level
=
instance_head_config
.
low_level
,
low_level_num_filters
=
instance_head_config
.
low_level_num_filters
,
activation
=
norm_activation_config
.
activation
,
use_sync_bn
=
norm_activation_config
.
use_sync_bn
,
norm_momentum
=
norm_activation_config
.
norm_momentum
,
norm_epsilon
=
norm_activation_config
.
norm_epsilon
,
kernel_regularizer
=
l2_regularizer
)
post_processing_config
=
model_config
.
post_processor
post_processor
=
panoptic_deeplab_merge
.
PostProcessor
(
center_score_threshold
=
post_processing_config
.
center_score_threshold
,
thing_class_ids
=
post_processing_config
.
thing_class_ids
,
label_divisor
=
post_processing_config
.
label_divisor
,
stuff_area_limit
=
post_processing_config
.
stuff_area_limit
,
ignore_label
=
post_processing_config
.
ignore_label
,
nms_kernel
=
post_processing_config
.
nms_kernel
,
keep_k_centers
=
post_processing_config
.
keep_k_centers
)
model
=
panoptic_deeplab_model
.
PanopticDeeplabModel
(
backbone
=
backbone
,
semantic_decoder
=
semantic_decoder
,
instance_decoder
=
instance_decoder
,
semantic_head
=
semantic_head
,
instance_head
=
instance_head
,
post_processor
=
post_processor
)
return
model
official/vision/beta/projects/panoptic_maskrcnn/modeling/factory_test.py
View file @
92221745
...
@@ -17,8 +17,10 @@
...
@@ -17,8 +17,10 @@
from
absl.testing
import
parameterized
from
absl.testing
import
parameterized
import
numpy
as
np
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorflow.python.distribute
import
combinations
from
official.vision.beta.projects.panoptic_maskrcnn.configs
import
panoptic_maskrcnn
as
panoptic_maskrcnn_cfg
from
official.vision.beta.projects.panoptic_maskrcnn.configs
import
panoptic_maskrcnn
as
panoptic_maskrcnn_cfg
from
official.vision.beta.projects.panoptic_maskrcnn.configs
import
panoptic_deeplab
as
panoptic_deeplab_cfg
from
official.vision.beta.projects.panoptic_maskrcnn.modeling
import
factory
from
official.vision.beta.projects.panoptic_maskrcnn.modeling
import
factory
from
official.vision.configs
import
backbones
from
official.vision.configs
import
backbones
from
official.vision.configs
import
decoders
from
official.vision.configs
import
decoders
...
@@ -62,5 +64,47 @@ class PanopticMaskRCNNBuilderTest(parameterized.TestCase, tf.test.TestCase):
...
@@ -62,5 +64,47 @@ class PanopticMaskRCNNBuilderTest(parameterized.TestCase, tf.test.TestCase):
model_config
=
model_config
,
model_config
=
model_config
,
l2_regularizer
=
l2_regularizer
)
l2_regularizer
=
l2_regularizer
)
class
PanopticDeeplabBuilderTest
(
parameterized
.
TestCase
,
tf
.
test
.
TestCase
):
@
combinations
.
generate
(
combinations
.
combine
(
input_size
=
[(
640
,
640
),
(
512
,
512
)],
backbone_type
=
[
'resnet'
,
'dilated_resnet'
],
decoder_type
=
[
'aspp'
,
'fpn'
],
level
=
[
2
,
3
,
4
],
low_level
=
[(
4
,
3
),
(
3
,
2
)],
shared_decoder
=
[
True
,
False
]))
def
test_builder
(
self
,
input_size
,
backbone_type
,
level
,
low_level
,
decoder_type
,
shared_decoder
):
num_classes
=
10
input_specs
=
tf
.
keras
.
layers
.
InputSpec
(
shape
=
[
None
,
input_size
[
0
],
input_size
[
1
],
3
])
model_config
=
panoptic_deeplab_cfg
.
PanopticDeeplab
(
num_classes
=
num_classes
,
input_size
=
input_size
,
backbone
=
backbones
.
Backbone
(
type
=
backbone_type
),
decoder
=
decoders
.
Decoder
(
type
=
decoder_type
),
semantic_head
=
panoptic_deeplab_cfg
.
SemanticHead
(
level
=
level
,
num_convs
=
1
,
kernel_size
=
5
,
prediction_kernel_size
=
1
,
low_level
=
low_level
),
instance_head
=
panoptic_deeplab_cfg
.
InstanceHead
(
level
=
level
,
num_convs
=
1
,
kernel_size
=
5
,
prediction_kernel_size
=
1
,
low_level
=
low_level
),
shared_decoder
=
shared_decoder
)
l2_regularizer
=
tf
.
keras
.
regularizers
.
l2
(
5e-5
)
_
=
factory
.
build_panoptic_deeplab
(
input_specs
=
input_specs
,
model_config
=
model_config
,
l2_regularizer
=
l2_regularizer
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
tf
.
test
.
main
()
official/vision/beta/projects/panoptic_maskrcnn/modeling/heads/panoptic_deeplab_heads.py
0 → 100644
View file @
92221745
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions for Panoptic Deeplab heads."""
from
typing
import
List
,
Union
,
Optional
,
Mapping
,
Tuple
import
tensorflow
as
tf
from
official.modeling
import
tf_utils
from
official.vision.beta.projects.panoptic_maskrcnn.modeling.layers
import
fusion_layers
from
official.vision.beta.ops
import
spatial_transform_ops
class
PanopticDeeplabHead
(
tf
.
keras
.
layers
.
Layer
):
"""Creates a panoptic deeplab head."""
def
__init__
(
self
,
level
:
Union
[
int
,
str
],
num_convs
:
int
=
2
,
num_filters
:
int
=
256
,
kernel_size
:
int
=
3
,
use_depthwise_convolution
:
bool
=
False
,
upsample_factor
:
int
=
1
,
low_level
:
Union
[
List
[
int
],
Tuple
[
int
]]
=
(
3
,
2
),
low_level_num_filters
:
Union
[
List
[
int
],
Tuple
[
int
]]
=
(
64
,
32
),
activation
:
str
=
'relu'
,
use_sync_bn
:
bool
=
False
,
norm_momentum
:
float
=
0.99
,
norm_epsilon
:
float
=
0.001
,
kernel_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
bias_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
**
kwargs
):
"""Initializes a panoptic deeplab head.
Args:
level: An `int` or `str`, level to use to build head.
num_convs: An `int` number of stacked convolution before the last
prediction layer.
num_filters: An `int` number to specify the number of filters used.
Default is 256.
kernel_size: An `int` number to specify the kernel size of the
stacked convolutions before the last prediction layer.
use_depthwise_convolution: A bool to specify if use depthwise separable
convolutions.
upsample_factor: An `int` number to specify the upsampling factor to
generate finer mask. Default 1 means no upsampling is applied.
low_level: An `int` of backbone level to be used for feature fusion. It is
used when feature_fusion is set to `deeplabv3plus`.
low_level_num_filters: An `int` of reduced number of filters for the low
level features before fusing it with higher level features. It is only
used when feature_fusion is set to `deeplabv3plus`.
activation: A `str` that indicates which activation is used, e.g. 'relu',
'swish', etc.
use_sync_bn: A `bool` that indicates whether to use synchronized batch
normalization across different replicas.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
Conv2D. Default is None.
bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
**kwargs: Additional keyword arguments to be passed.
"""
super
(
PanopticDeeplabHead
,
self
).
__init__
(
**
kwargs
)
self
.
_config_dict
=
{
'level'
:
level
,
'num_convs'
:
num_convs
,
'num_filters'
:
num_filters
,
'kernel_size'
:
kernel_size
,
'use_depthwise_convolution'
:
use_depthwise_convolution
,
'upsample_factor'
:
upsample_factor
,
'low_level'
:
low_level
,
'low_level_num_filters'
:
low_level_num_filters
,
'activation'
:
activation
,
'use_sync_bn'
:
use_sync_bn
,
'norm_momentum'
:
norm_momentum
,
'norm_epsilon'
:
norm_epsilon
,
'kernel_regularizer'
:
kernel_regularizer
,
'bias_regularizer'
:
bias_regularizer
}
if
tf
.
keras
.
backend
.
image_data_format
()
==
'channels_last'
:
self
.
_bn_axis
=
-
1
else
:
self
.
_bn_axis
=
1
self
.
_activation
=
tf_utils
.
get_activation
(
activation
)
def
build
(
self
,
input_shape
:
Union
[
tf
.
TensorShape
,
List
[
tf
.
TensorShape
]]):
"""Creates the variables of the head."""
kernel_size
=
self
.
_config_dict
[
'kernel_size'
]
use_depthwise_convolution
=
self
.
_config_dict
[
'use_depthwise_convolution'
]
random_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
stddev
=
0.01
)
conv_op
=
tf
.
keras
.
layers
.
Conv2D
conv_kwargs
=
{
'kernel_size'
:
kernel_size
if
not
use_depthwise_convolution
else
1
,
'padding'
:
'same'
,
'use_bias'
:
False
,
'kernel_initializer'
:
random_initializer
,
'kernel_regularizer'
:
self
.
_config_dict
[
'kernel_regularizer'
],
}
bn_op
=
(
tf
.
keras
.
layers
.
experimental
.
SyncBatchNormalization
if
self
.
_config_dict
[
'use_sync_bn'
]
else
tf
.
keras
.
layers
.
BatchNormalization
)
bn_kwargs
=
{
'axis'
:
self
.
_bn_axis
,
'momentum'
:
self
.
_config_dict
[
'norm_momentum'
],
'epsilon'
:
self
.
_config_dict
[
'norm_epsilon'
],
}
self
.
_panoptic_deeplab_fusion
=
fusion_layers
.
PanopticDeepLabFusion
(
level
=
self
.
_config_dict
[
'level'
],
low_level
=
self
.
_config_dict
[
'low_level'
],
num_projection_filters
=
self
.
_config_dict
[
'low_level_num_filters'
],
num_output_filters
=
self
.
_config_dict
[
'num_filters'
],
activation
=
self
.
_config_dict
[
'activation'
],
use_sync_bn
=
self
.
_config_dict
[
'use_sync_bn'
],
norm_momentum
=
self
.
_config_dict
[
'norm_momentum'
],
norm_epsilon
=
self
.
_config_dict
[
'norm_epsilon'
],
kernel_regularizer
=
self
.
_config_dict
[
'kernel_regularizer'
],
bias_regularizer
=
self
.
_config_dict
[
'bias_regularizer'
])
# Stacked convolutions layers.
self
.
_convs
=
[]
self
.
_norms
=
[]
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
if
use_depthwise_convolution
:
self
.
_convs
.
append
(
tf
.
keras
.
layers
.
DepthwiseConv2D
(
name
=
'panoptic_deeplab_head_depthwise_conv_{}'
.
format
(
i
),
kernel_size
=
3
,
padding
=
'same'
,
use_bias
=
False
,
depthwise_initializer
=
random_initializer
,
depthwise_regularizer
=
self
.
_config_dict
[
'kernel_regularizer'
],
depth_multiplier
=
1
))
norm_name
=
'panoptic_deeplab_head_depthwise_norm_{}'
.
format
(
i
)
self
.
_norms
.
append
(
bn_op
(
name
=
norm_name
,
**
bn_kwargs
))
conv_name
=
'panoptic_deeplab_head_conv_{}'
.
format
(
i
)
self
.
_convs
.
append
(
conv_op
(
name
=
conv_name
,
filters
=
self
.
_config_dict
[
'num_filters'
],
**
conv_kwargs
))
norm_name
=
'panoptic_deeplab_head_norm_{}'
.
format
(
i
)
self
.
_norms
.
append
(
bn_op
(
name
=
norm_name
,
**
bn_kwargs
))
super
().
build
(
input_shape
)
def
call
(
self
,
inputs
:
Tuple
[
Union
[
tf
.
Tensor
,
Mapping
[
str
,
tf
.
Tensor
]],
Union
[
tf
.
Tensor
,
Mapping
[
str
,
tf
.
Tensor
]]],
training
=
None
):
"""Forward pass of the head.
It supports both a tuple of 2 tensors or 2 dictionaries. The first is
backbone endpoints, and the second is decoder endpoints. When inputs are
tensors, they are from a single level of feature maps. When inputs are
dictionaries, they contain multiple levels of feature maps, where the key
is the index of feature map.
Args:
inputs: A tuple of 2 feature map tensors of shape
[batch, height_l, width_l, channels] or 2 dictionaries of tensors:
- key: A `str` of the level of the multilevel features.
- values: A `tf.Tensor` of the feature map tensors, whose shape is
[batch, height_l, width_l, channels].
Returns:
A `tf.Tensor` of the fused backbone and decoder features.
"""
if
training
is
None
:
training
=
tf
.
keras
.
backend
.
learning_phase
()
x
=
self
.
_panoptic_deeplab_fusion
(
inputs
,
training
=
training
)
for
conv
,
norm
in
zip
(
self
.
_convs
,
self
.
_norms
):
x
=
conv
(
x
)
x
=
norm
(
x
,
training
=
training
)
x
=
self
.
_activation
(
x
)
if
self
.
_config_dict
[
'upsample_factor'
]
>
1
:
x
=
spatial_transform_ops
.
nearest_upsampling
(
x
,
scale
=
self
.
_config_dict
[
'upsample_factor'
])
return
x
def
get_config
(
self
):
base_config
=
super
().
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
self
.
_config_dict
.
items
()))
@
classmethod
def
from_config
(
cls
,
config
):
return
cls
(
**
config
)
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
'Vision'
)
class
SemanticHead
(
PanopticDeeplabHead
):
"""Creates a semantic head."""
def
__init__
(
self
,
num_classes
:
int
,
level
:
Union
[
int
,
str
],
num_convs
:
int
=
2
,
num_filters
:
int
=
256
,
kernel_size
:
int
=
3
,
prediction_kernel_size
:
int
=
3
,
use_depthwise_convolution
:
bool
=
False
,
upsample_factor
:
int
=
1
,
low_level
:
Union
[
List
[
int
],
Tuple
[
int
]]
=
(
3
,
2
),
low_level_num_filters
:
Union
[
List
[
int
],
Tuple
[
int
]]
=
(
64
,
32
),
activation
:
str
=
'relu'
,
use_sync_bn
:
bool
=
False
,
norm_momentum
:
float
=
0.99
,
norm_epsilon
:
float
=
0.001
,
kernel_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
bias_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
**
kwargs
):
"""Initializes a instance center head.
Args:
num_classes: An `int` number of mask classification categories. The number
of classes does not include background class.
level: An `int` or `str`, level to use to build head.
num_convs: An `int` number of stacked convolution before the last
prediction layer.
num_filters: An `int` number to specify the number of filters used.
Default is 256.
kernel_size: An `int` number to specify the kernel size of the
stacked convolutions before the last prediction layer.
prediction_kernel_size: An `int` number to specify the kernel size of the
prediction layer.
use_depthwise_convolution: A bool to specify if use depthwise separable
convolutions.
upsample_factor: An `int` number to specify the upsampling factor to
generate finer mask. Default 1 means no upsampling is applied.
low_level: An `int` of backbone level to be used for feature fusion. It is
used when feature_fusion is set to `deeplabv3plus`.
low_level_num_filters: An `int` of reduced number of filters for the low
level features before fusing it with higher level features. It is only
used when feature_fusion is set to `deeplabv3plus`.
activation: A `str` that indicates which activation is used, e.g. 'relu',
'swish', etc.
use_sync_bn: A `bool` that indicates whether to use synchronized batch
normalization across different replicas.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
Conv2D. Default is None.
bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
**kwargs: Additional keyword arguments to be passed.
"""
super
(
SemanticHead
,
self
).
__init__
(
level
=
level
,
num_convs
=
num_convs
,
num_filters
=
num_filters
,
use_depthwise_convolution
=
use_depthwise_convolution
,
kernel_size
=
kernel_size
,
upsample_factor
=
upsample_factor
,
low_level
=
low_level
,
low_level_num_filters
=
low_level_num_filters
,
activation
=
activation
,
use_sync_bn
=
use_sync_bn
,
norm_momentum
=
norm_momentum
,
norm_epsilon
=
norm_epsilon
,
kernel_regularizer
=
kernel_regularizer
,
bias_regularizer
=
bias_regularizer
,
**
kwargs
)
self
.
_config_dict
.
update
({
'num_classes'
:
num_classes
,
'prediction_kernel_size'
:
prediction_kernel_size
})
def
build
(
self
,
input_shape
:
Union
[
tf
.
TensorShape
,
List
[
tf
.
TensorShape
]]):
"""Creates the variables of the semantic head."""
super
(
SemanticHead
,
self
).
build
(
input_shape
)
self
.
_classifier
=
tf
.
keras
.
layers
.
Conv2D
(
name
=
'semantic_output'
,
filters
=
self
.
_config_dict
[
'num_classes'
],
kernel_size
=
self
.
_config_dict
[
'prediction_kernel_size'
],
padding
=
'same'
,
bias_initializer
=
tf
.
zeros_initializer
(),
kernel_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
stddev
=
0.01
),
kernel_regularizer
=
self
.
_config_dict
[
'kernel_regularizer'
],
bias_regularizer
=
self
.
_config_dict
[
'bias_regularizer'
])
def
call
(
self
,
inputs
:
Tuple
[
Union
[
tf
.
Tensor
,
Mapping
[
str
,
tf
.
Tensor
]],
Union
[
tf
.
Tensor
,
Mapping
[
str
,
tf
.
Tensor
]]],
training
=
None
):
"""Forward pass of the head."""
if
training
is
None
:
training
=
tf
.
keras
.
backend
.
learning_phase
()
x
=
super
(
SemanticHead
,
self
).
call
(
inputs
,
training
=
training
)
outputs
=
self
.
_classifier
(
x
)
return
outputs
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
'Vision'
)
class
InstanceHead
(
PanopticDeeplabHead
):
"""Creates a instance head."""
def
__init__
(
self
,
level
:
Union
[
int
,
str
],
num_convs
:
int
=
2
,
num_filters
:
int
=
256
,
kernel_size
:
int
=
3
,
prediction_kernel_size
:
int
=
3
,
use_depthwise_convolution
:
bool
=
False
,
upsample_factor
:
int
=
1
,
low_level
:
Union
[
List
[
int
],
Tuple
[
int
]]
=
(
3
,
2
),
low_level_num_filters
:
Union
[
List
[
int
],
Tuple
[
int
]]
=
(
64
,
32
),
activation
:
str
=
'relu'
,
use_sync_bn
:
bool
=
False
,
norm_momentum
:
float
=
0.99
,
norm_epsilon
:
float
=
0.001
,
kernel_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
bias_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
**
kwargs
):
"""Initializes a instance center head.
Args:
level: An `int` or `str`, level to use to build head.
num_convs: An `int` number of stacked convolution before the last
prediction layer.
num_filters: An `int` number to specify the number of filters used.
Default is 256.
kernel_size: An `int` number to specify the kernel size of the
stacked convolutions before the last prediction layer.
prediction_kernel_size: An `int` number to specify the kernel size of the
prediction layer.
use_depthwise_convolution: A bool to specify if use depthwise separable
convolutions.
upsample_factor: An `int` number to specify the upsampling factor to
generate finer mask. Default 1 means no upsampling is applied.
low_level: An `int` of backbone level to be used for feature fusion. It is
used when feature_fusion is set to `deeplabv3plus`.
low_level_num_filters: An `int` of reduced number of filters for the low
level features before fusing it with higher level features. It is only
used when feature_fusion is set to `deeplabv3plus`.
activation: A `str` that indicates which activation is used, e.g. 'relu',
'swish', etc.
use_sync_bn: A `bool` that indicates whether to use synchronized batch
normalization across different replicas.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
Conv2D. Default is None.
bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
**kwargs: Additional keyword arguments to be passed.
"""
super
(
InstanceHead
,
self
).
__init__
(
level
=
level
,
num_convs
=
num_convs
,
num_filters
=
num_filters
,
use_depthwise_convolution
=
use_depthwise_convolution
,
kernel_size
=
kernel_size
,
upsample_factor
=
upsample_factor
,
low_level
=
low_level
,
low_level_num_filters
=
low_level_num_filters
,
activation
=
activation
,
use_sync_bn
=
use_sync_bn
,
norm_momentum
=
norm_momentum
,
norm_epsilon
=
norm_epsilon
,
kernel_regularizer
=
kernel_regularizer
,
bias_regularizer
=
bias_regularizer
,
**
kwargs
)
self
.
_config_dict
.
update
({
'prediction_kernel_size'
:
prediction_kernel_size
})
def
build
(
self
,
input_shape
:
Union
[
tf
.
TensorShape
,
List
[
tf
.
TensorShape
]]):
"""Creates the variables of the instance head."""
super
(
InstanceHead
,
self
).
build
(
input_shape
)
self
.
_instance_center_prediction_conv
=
tf
.
keras
.
layers
.
Conv2D
(
name
=
'instance_center_prediction'
,
filters
=
1
,
kernel_size
=
self
.
_config_dict
[
'prediction_kernel_size'
],
padding
=
'same'
,
bias_initializer
=
tf
.
zeros_initializer
(),
kernel_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
stddev
=
0.01
),
kernel_regularizer
=
self
.
_config_dict
[
'kernel_regularizer'
],
bias_regularizer
=
self
.
_config_dict
[
'bias_regularizer'
])
self
.
_instance_center_regression_conv
=
tf
.
keras
.
layers
.
Conv2D
(
name
=
'instance_center_regression'
,
filters
=
2
,
kernel_size
=
self
.
_config_dict
[
'prediction_kernel_size'
],
padding
=
'same'
,
bias_initializer
=
tf
.
zeros_initializer
(),
kernel_initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
stddev
=
0.01
),
kernel_regularizer
=
self
.
_config_dict
[
'kernel_regularizer'
],
bias_regularizer
=
self
.
_config_dict
[
'bias_regularizer'
])
def
call
(
self
,
inputs
:
Tuple
[
Union
[
tf
.
Tensor
,
Mapping
[
str
,
tf
.
Tensor
]],
Union
[
tf
.
Tensor
,
Mapping
[
str
,
tf
.
Tensor
]]],
training
=
None
):
"""Forward pass of the head."""
if
training
is
None
:
training
=
tf
.
keras
.
backend
.
learning_phase
()
x
=
super
(
InstanceHead
,
self
).
call
(
inputs
,
training
=
training
)
instance_center_prediction
=
self
.
_instance_center_prediction_conv
(
x
)
instance_center_regression
=
self
.
_instance_center_regression_conv
(
x
)
outputs
=
{
'instance_center_prediction'
:
instance_center_prediction
,
'instance_center_regression'
:
instance_center_regression
}
return
outputs
official/vision/beta/projects/panoptic_maskrcnn/modeling/heads/panoptic_deeplab_heads_test.py
0 → 100644
View file @
92221745
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Tests for panoptic_deeplab_heads.py."""
# Import libraries
from
absl.testing
import
parameterized
import
numpy
as
np
import
tensorflow
as
tf
from
official.vision.beta.projects.panoptic_maskrcnn.modeling.heads
import
panoptic_deeplab_heads
class
PanopticDeeplabHeadsTest
(
parameterized
.
TestCase
,
tf
.
test
.
TestCase
):
@
parameterized
.
parameters
(
(
2
,
(
2
,),
(
48
,)),
(
3
,
(
2
,),
(
48
,)),
(
2
,
(
2
,),
(
48
,)),
(
2
,
(
2
,),
(
48
,)),
(
3
,
(
2
,),
(
48
,)),
(
3
,
(
2
,),
(
48
,)),
(
4
,
(
4
,
3
),
(
64
,
32
)),
(
4
,
(
3
,
2
),
(
64
,
32
)))
def
test_forward
(
self
,
level
,
low_level
,
low_level_num_filters
):
backbone_features
=
{
'3'
:
np
.
random
.
rand
(
2
,
128
,
128
,
16
),
'4'
:
np
.
random
.
rand
(
2
,
64
,
64
,
16
),
'5'
:
np
.
random
.
rand
(
2
,
32
,
32
,
16
),
}
decoder_features
=
{
'3'
:
np
.
random
.
rand
(
2
,
128
,
128
,
64
),
'4'
:
np
.
random
.
rand
(
2
,
64
,
64
,
64
),
'5'
:
np
.
random
.
rand
(
2
,
32
,
32
,
64
),
'6'
:
np
.
random
.
rand
(
2
,
16
,
16
,
64
),
}
backbone_features
[
'2'
]
=
np
.
random
.
rand
(
2
,
256
,
256
,
16
)
decoder_features
[
'2'
]
=
np
.
random
.
rand
(
2
,
256
,
256
,
64
)
num_classes
=
10
semantic_head
=
panoptic_deeplab_heads
.
SemanticHead
(
num_classes
=
num_classes
,
level
=
level
,
low_level
=
low_level
,
low_level_num_filters
=
low_level_num_filters
)
instance_head
=
panoptic_deeplab_heads
.
InstanceHead
(
level
=
level
,
low_level
=
low_level
,
low_level_num_filters
=
low_level_num_filters
)
semantic_outputs
=
semantic_head
((
backbone_features
,
decoder_features
))
instance_outputs
=
instance_head
((
backbone_features
,
decoder_features
))
if
str
(
level
)
in
decoder_features
:
h
,
w
=
decoder_features
[
str
(
low_level
[
-
1
])].
shape
[
1
:
3
]
self
.
assertAllEqual
(
semantic_outputs
.
numpy
().
shape
,
[
2
,
h
,
w
,
num_classes
])
self
.
assertAllEqual
(
instance_outputs
[
'instance_center_prediction'
].
numpy
().
shape
,
[
2
,
h
,
w
,
1
])
self
.
assertAllEqual
(
instance_outputs
[
'instance_center_regression'
].
numpy
().
shape
,
[
2
,
h
,
w
,
2
])
def
test_serialize_deserialize
(
self
):
semantic_head
=
panoptic_deeplab_heads
.
SemanticHead
(
num_classes
=
2
,
level
=
3
)
instance_head
=
panoptic_deeplab_heads
.
InstanceHead
(
level
=
3
)
semantic_head_config
=
semantic_head
.
get_config
()
instance_head_config
=
instance_head
.
get_config
()
new_semantic_head
=
panoptic_deeplab_heads
.
SemanticHead
.
from_config
(
semantic_head_config
)
new_instance_head
=
panoptic_deeplab_heads
.
InstanceHead
.
from_config
(
instance_head_config
)
self
.
assertAllEqual
(
semantic_head
.
get_config
(),
new_semantic_head
.
get_config
())
self
.
assertAllEqual
(
instance_head
.
get_config
(),
new_instance_head
.
get_config
())
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
official/vision/beta/projects/panoptic_maskrcnn/modeling/layers/fusion_layers.py
0 → 100644
View file @
92221745
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains common building blocks for neural networks."""
from
typing
import
Any
,
Callable
,
Dict
,
List
,
Mapping
,
Optional
,
Union
import
tensorflow
as
tf
from
official.modeling
import
tf_utils
# Type annotations.
States
=
Dict
[
str
,
tf
.
Tensor
]
Activation
=
Union
[
str
,
Callable
]
class
PanopticDeepLabFusion
(
tf
.
keras
.
layers
.
Layer
):
"""Creates a Panoptic DeepLab feature Fusion layer.
This implements the feature fusion introduced in the paper:
Cheng et al. Panoptic-DeepLab
(https://arxiv.org/pdf/1911.10194.pdf)
"""
def
__init__
(
self
,
level
:
int
,
low_level
:
List
[
int
]
=
[
3
,
2
],
num_projection_filters
:
List
[
int
]
=
[
64
,
32
],
num_output_filters
:
int
=
256
,
activation
:
str
=
'relu'
,
use_sync_bn
:
bool
=
False
,
norm_momentum
:
float
=
0.99
,
norm_epsilon
:
float
=
0.001
,
kernel_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
bias_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
interpolation
:
str
=
'bilinear'
,
**
kwargs
):
"""Initializes panoptic FPN feature fusion layer.
Args:
level: An `int` level at which the decoder was appled at.
low_level: A list of `int` of minimum level to use in feature fusion.
num_filters: An `int` number of filters in conv2d layers.
activation: A `str` name of the activation function.
use_sync_bn: A `bool` that indicates whether to use synchronized batch
normalization across different replicas.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
Conv2D. Default is None.
bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
interpolation: A `str` interpolation method for upsampling. Defaults to
`bilinear`.
**kwargs: Additional keyword arguments to be passed.
Returns:
A `float` `tf.Tensor` of shape [batch_size, feature_height, feature_width,
feature_channel].
"""
super
(
PanopticDeepLabFusion
,
self
).
__init__
(
**
kwargs
)
self
.
_config_dict
=
{
'level'
:
level
,
'low_level'
:
low_level
,
'num_projection_filters'
:
num_projection_filters
,
'num_output_filters'
:
num_output_filters
,
'activation'
:
activation
,
'use_sync_bn'
:
use_sync_bn
,
'norm_momentum'
:
norm_momentum
,
'norm_epsilon'
:
norm_epsilon
,
'kernel_regularizer'
:
kernel_regularizer
,
'bias_regularizer'
:
bias_regularizer
,
'interpolation'
:
interpolation
}
if
tf
.
keras
.
backend
.
image_data_format
()
==
'channels_last'
:
self
.
_channel_axis
=
-
1
else
:
self
.
_channel_axis
=
1
self
.
_activation
=
tf_utils
.
get_activation
(
activation
)
def
build
(
self
,
input_shape
:
List
[
tf
.
TensorShape
]):
conv_op
=
tf
.
keras
.
layers
.
Conv2D
conv_kwargs
=
{
'padding'
:
'same'
,
'use_bias'
:
False
,
'kernel_initializer'
:
tf
.
initializers
.
VarianceScaling
(),
'kernel_regularizer'
:
self
.
_config_dict
[
'kernel_regularizer'
],
}
bn_op
=
(
tf
.
keras
.
layers
.
experimental
.
SyncBatchNormalization
if
self
.
_config_dict
[
'use_sync_bn'
]
else
tf
.
keras
.
layers
.
BatchNormalization
)
bn_kwargs
=
{
'axis'
:
self
.
_channel_axis
,
'momentum'
:
self
.
_config_dict
[
'norm_momentum'
],
'epsilon'
:
self
.
_config_dict
[
'norm_epsilon'
],
}
self
.
_projection_convs
=
[]
self
.
_projection_norms
=
[]
self
.
_fusion_convs
=
[]
self
.
_fusion_norms
=
[]
for
i
in
range
(
len
(
self
.
_config_dict
[
'low_level'
])):
self
.
_projection_convs
.
append
(
conv_op
(
filters
=
self
.
_config_dict
[
'num_projection_filters'
][
i
],
kernel_size
=
1
,
**
conv_kwargs
))
self
.
_fusion_convs
.
append
(
conv_op
(
filters
=
self
.
_config_dict
[
'num_output_filters'
],
kernel_size
=
5
,
**
conv_kwargs
))
self
.
_projection_norms
.
append
(
bn_op
(
**
bn_kwargs
))
self
.
_fusion_norms
.
append
(
bn_op
(
**
bn_kwargs
))
def
call
(
self
,
inputs
,
training
=
None
):
if
training
is
None
:
training
=
tf
.
keras
.
backend
.
learning_phase
()
backbone_output
=
inputs
[
0
]
decoder_output
=
inputs
[
1
][
str
(
self
.
_config_dict
[
'level'
])]
x
=
decoder_output
for
i
in
range
(
len
(
self
.
_config_dict
[
'low_level'
])):
feature
=
backbone_output
[
str
(
self
.
_config_dict
[
'low_level'
][
i
])]
feature
=
self
.
_projection_convs
[
i
](
feature
)
feature
=
self
.
_projection_norms
[
i
](
feature
,
training
=
training
)
feature
=
self
.
_activation
(
feature
)
shape
=
tf
.
shape
(
feature
)
x
=
tf
.
image
.
resize
(
x
,
size
=
[
shape
[
1
],
shape
[
2
]],
method
=
self
.
_config_dict
[
'interpolation'
])
x
=
tf
.
concat
([
x
,
feature
],
axis
=
self
.
_channel_axis
)
x
=
self
.
_fusion_convs
[
i
](
x
)
x
=
self
.
_fusion_norms
[
i
](
x
,
training
=
training
)
x
=
self
.
_activation
(
x
)
return
x
def
get_config
(
self
)
->
Mapping
[
str
,
Any
]:
return
self
.
_config_dict
@
classmethod
def
from_config
(
cls
,
config
,
custom_objects
=
None
):
return
cls
(
**
config
)
official/vision/beta/projects/panoptic_maskrcnn/modeling/layers/panoptic_deeplab_merge.py
0 → 100644
View file @
92221745
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains functions to post-process Panoptic-DeepLab results
Note that the postprocessing class and the supporting functions are branched
from https://github.com/google-research/deeplab2/blob/main/model/post_processor/panoptic_deeplab.py
"""
import
functools
from
typing
import
List
,
Tuple
,
Dict
,
Text
import
tensorflow
as
tf
def
_add_zero_padding
(
input_tensor
:
tf
.
Tensor
,
kernel_size
:
int
,
rank
:
int
)
->
tf
.
Tensor
:
"""Adds zero-padding to the input_tensor."""
pad_total
=
kernel_size
-
1
pad_begin
=
pad_total
//
2
pad_end
=
pad_total
-
pad_begin
if
rank
==
3
:
return
tf
.
pad
(
input_tensor
,
paddings
=
[[
pad_begin
,
pad_end
],
[
pad_begin
,
pad_end
],
[
0
,
0
]])
else
:
return
tf
.
pad
(
input_tensor
,
paddings
=
[[
0
,
0
],
[
pad_begin
,
pad_end
],
[
pad_begin
,
pad_end
],
[
0
,
0
]])
def
_get_semantic_predictions
(
semantic_logits
:
tf
.
Tensor
)
->
tf
.
Tensor
:
"""Computes the semantic classes from the predictions.
Args:
semantic_logits: A tf.tensor of shape [batch, height, width, classes].
Returns:
A tf.Tensor containing the semantic class prediction of shape
[batch, height, width].
"""
return
tf
.
argmax
(
semantic_logits
,
axis
=-
1
,
output_type
=
tf
.
int32
)
def
_get_instance_centers_from_heatmap
(
center_heatmap
:
tf
.
Tensor
,
center_threshold
:
float
,
nms_kernel_size
:
int
,
keep_k_centers
:
int
)
->
Tuple
[
tf
.
Tensor
,
tf
.
Tensor
]:
"""Computes a list of instance centers.
Args:
center_heatmap: A tf.Tensor of shape [height, width, 1].
center_threshold: A float setting the threshold for the center heatmap.
nms_kernel_size: An integer specifying the nms kernel size.
keep_k_centers: An integer specifying the number of centers to keep (K).
Non-positive values will keep all centers.
Returns:
A tuple of
- tf.Tensor of shape [N, 2] containing N center coordinates (after
non-maximum suppression) in (y, x) order.
- tf.Tensor of shape [height, width] containing the center heatmap after
non-maximum suppression.
"""
# Threshold center map.
center_heatmap
=
tf
.
where
(
tf
.
greater
(
center_heatmap
,
center_threshold
),
center_heatmap
,
0.0
)
# Non-maximum suppression.
padded_map
=
_add_zero_padding
(
center_heatmap
,
nms_kernel_size
,
rank
=
3
)
pooled_center_heatmap
=
tf
.
keras
.
backend
.
pool2d
(
tf
.
expand_dims
(
padded_map
,
0
),
pool_size
=
(
nms_kernel_size
,
nms_kernel_size
),
strides
=
(
1
,
1
),
padding
=
'valid'
,
pool_mode
=
'max'
)
center_heatmap
=
tf
.
where
(
tf
.
equal
(
pooled_center_heatmap
,
center_heatmap
),
center_heatmap
,
0.0
)
center_heatmap
=
tf
.
squeeze
(
center_heatmap
,
axis
=
[
0
,
3
])
# `centers` is of shape (N, 2) with (y, x) order of the second dimension.
centers
=
tf
.
where
(
tf
.
greater
(
center_heatmap
,
0.0
))
if
keep_k_centers
>
0
and
tf
.
shape
(
centers
)[
0
]
>
keep_k_centers
:
topk_scores
,
_
=
tf
.
math
.
top_k
(
tf
.
reshape
(
center_heatmap
,
[
-
1
]),
keep_k_centers
,
sorted
=
False
)
centers
=
tf
.
where
(
tf
.
greater
(
center_heatmap
,
topk_scores
[
-
1
]))
return
centers
,
center_heatmap
def
_find_closest_center_per_pixel
(
centers
:
tf
.
Tensor
,
center_offsets
:
tf
.
Tensor
)
->
tf
.
Tensor
:
"""Assigns all pixels to their closest center.
Args:
centers: A tf.Tensor of shape [N, 2] containing N centers with coordinate
order (y, x).
center_offsets: A tf.Tensor of shape [height, width, 2].
Returns:
A tf.Tensor of shape [height, width] containing the index of the closest
center, per pixel.
"""
height
=
tf
.
shape
(
center_offsets
)[
0
]
width
=
tf
.
shape
(
center_offsets
)[
1
]
x_coord
,
y_coord
=
tf
.
meshgrid
(
tf
.
range
(
width
),
tf
.
range
(
height
))
coord
=
tf
.
stack
([
y_coord
,
x_coord
],
axis
=-
1
)
center_per_pixel
=
tf
.
cast
(
coord
,
tf
.
float32
)
+
center_offsets
# centers: [N, 2] -> [N, 1, 2].
# center_per_pixel: [H, W, 2] -> [1, H*W, 2].
centers
=
tf
.
cast
(
tf
.
expand_dims
(
centers
,
1
),
tf
.
float32
)
center_per_pixel
=
tf
.
reshape
(
center_per_pixel
,
[
height
*
width
,
2
])
center_per_pixel
=
tf
.
expand_dims
(
center_per_pixel
,
0
)
# distances: [N, H*W].
distances
=
tf
.
norm
(
centers
-
center_per_pixel
,
axis
=-
1
)
return
tf
.
reshape
(
tf
.
argmin
(
distances
,
axis
=
0
),
[
height
,
width
])
def
_get_instances_from_heatmap_and_offset
(
semantic_segmentation
:
tf
.
Tensor
,
center_heatmap
:
tf
.
Tensor
,
center_offsets
:
tf
.
Tensor
,
center_threshold
:
float
,
thing_class_ids
:
tf
.
Tensor
,
nms_kernel_size
:
int
,
keep_k_centers
:
int
)
->
Tuple
[
tf
.
Tensor
,
tf
.
Tensor
,
tf
.
Tensor
]:
"""Computes the instance assignment per pixel.
Args:
semantic_segmentation: A tf.Tensor containing the semantic labels of shape
[height, width].
center_heatmap: A tf.Tensor of shape [height, width, 1].
center_offsets: A tf.Tensor of shape [height, width, 2].
center_threshold: A float setting the threshold for the center heatmap.
thing_class_ids: A tf.Tensor of shape [N] containing N thing indices.
nms_kernel_size: An integer specifying the nms kernel size.
keep_k_centers: An integer specifying the number of centers to keep.
Negative values will keep all centers.
Returns:
A tuple of:
- tf.Tensor containing the instance segmentation (filtered with the `thing`
segmentation from the semantic segmentation output) with shape
[height, width].
- tf.Tensor containing the processed centermap with shape [height, width].
- tf.Tensor containing instance scores (where higher "score" is a reasonable
signal of a higher confidence detection.) Will be of shape [height, width]
with the score for a pixel being the score of the instance it belongs to.
The scores will be zero for pixels in background/"stuff" regions.
"""
thing_segmentation
=
tf
.
zeros_like
(
semantic_segmentation
)
for
thing_id
in
thing_class_ids
:
thing_segmentation
=
tf
.
where
(
tf
.
equal
(
semantic_segmentation
,
thing_id
),
1
,
thing_segmentation
)
centers
,
processed_center_heatmap
=
_get_instance_centers_from_heatmap
(
center_heatmap
,
center_threshold
,
nms_kernel_size
,
keep_k_centers
)
if
tf
.
shape
(
centers
)[
0
]
==
0
:
return
(
tf
.
zeros_like
(
semantic_segmentation
),
processed_center_heatmap
,
tf
.
zeros_like
(
processed_center_heatmap
))
instance_center_index
=
_find_closest_center_per_pixel
(
centers
,
center_offsets
)
# Instance IDs should start with 1. So we use the index into the centers, but
# shifted by 1.
instance_segmentation
=
tf
.
cast
(
instance_center_index
,
tf
.
int32
)
+
1
# The value of the heatmap at an instance's center is used as the score
# for that instance.
instance_scores
=
tf
.
gather_nd
(
processed_center_heatmap
,
centers
)
tf
.
debugging
.
assert_shapes
([
(
centers
,
(
'N'
,
2
)),
(
instance_scores
,
(
'N'
,)),
])
# This will map the instance scores back to the image space: where each pixel
# has a value equal to the score of its instance.
flat_center_index
=
tf
.
reshape
(
instance_center_index
,
[
-
1
])
instance_score_map
=
tf
.
gather
(
instance_scores
,
flat_center_index
)
instance_score_map
=
tf
.
reshape
(
instance_score_map
,
tf
.
shape
(
instance_segmentation
))
instance_score_map
*=
tf
.
cast
(
thing_segmentation
,
tf
.
float32
)
return
(
thing_segmentation
*
instance_segmentation
,
processed_center_heatmap
,
instance_score_map
)
@
tf
.
function
def
_get_panoptic_predictions
(
semantic_logits
:
tf
.
Tensor
,
center_heatmap
:
tf
.
Tensor
,
center_offsets
:
tf
.
Tensor
,
center_threshold
:
float
,
thing_class_ids
:
tf
.
Tensor
,
label_divisor
:
int
,
stuff_area_limit
:
int
,
void_label
:
int
,
nms_kernel_size
:
int
,
keep_k_centers
:
int
)
->
Tuple
[
tf
.
Tensor
,
tf
.
Tensor
,
tf
.
Tensor
,
tf
.
Tensor
,
tf
.
Tensor
]:
"""Computes the semantic class and instance ID per pixel.
Args:
semantic_logits: A tf.Tensor of shape [batch, height, width, classes].
center_heatmap: A tf.Tensor of shape [batch, height, width, 1].
center_offsets: A tf.Tensor of shape [batch, height, width, 2].
center_threshold: A float setting the threshold for the center heatmap.
thing_class_ids: A tf.Tensor of shape [N] containing N thing indices.
label_divisor: An integer specifying the label divisor of the dataset.
stuff_area_limit: An integer specifying the number of pixels that stuff
regions need to have at least. The stuff region will be included in the
panoptic prediction, only if its area is larger than the limit; otherwise,
it will be re-assigned as void_label.
void_label: An integer specifying the void label.
nms_kernel_size: An integer specifying the nms kernel size.
keep_k_centers: An integer specifying the number of centers to keep.
Negative values will keep all centers.
Returns:
A tuple of:
- the panoptic prediction as tf.Tensor with shape [batch, height, width].
- the semantic prediction as tf.Tensor with shape [batch, height, width].
- the instance prediction as tf.Tensor with shape [batch, height, width].
- the centermap prediction as tf.Tensor with shape [batch, height, width].
- the instance score maps as tf.Tensor with shape [batch, height, width].
"""
semantic_prediction
=
_get_semantic_predictions
(
semantic_logits
)
batch_size
=
tf
.
shape
(
semantic_logits
)[
0
]
instance_map_lists
=
tf
.
TensorArray
(
tf
.
int32
,
size
=
batch_size
,
dynamic_size
=
False
)
center_map_lists
=
tf
.
TensorArray
(
tf
.
float32
,
size
=
batch_size
,
dynamic_size
=
False
)
instance_score_map_lists
=
tf
.
TensorArray
(
tf
.
float32
,
size
=
batch_size
,
dynamic_size
=
False
)
for
i
in
tf
.
range
(
batch_size
):
(
instance_map
,
center_map
,
instance_score_map
)
=
_get_instances_from_heatmap_and_offset
(
semantic_prediction
[
i
,
...],
center_heatmap
[
i
,
...],
center_offsets
[
i
,
...],
center_threshold
,
thing_class_ids
,
nms_kernel_size
,
keep_k_centers
)
instance_map_lists
=
instance_map_lists
.
write
(
i
,
instance_map
)
center_map_lists
=
center_map_lists
.
write
(
i
,
center_map
)
instance_score_map_lists
=
instance_score_map_lists
.
write
(
i
,
instance_score_map
)
# This does not work with unknown shapes.
instance_maps
=
instance_map_lists
.
stack
()
center_maps
=
center_map_lists
.
stack
()
instance_score_maps
=
instance_score_map_lists
.
stack
()
panoptic_prediction
=
_merge_semantic_and_instance_maps
(
semantic_prediction
,
instance_maps
,
thing_class_ids
,
label_divisor
,
stuff_area_limit
,
void_label
)
return
(
panoptic_prediction
,
semantic_prediction
,
instance_maps
,
center_maps
,
instance_score_maps
)
@
tf
.
function
def
_merge_semantic_and_instance_maps
(
semantic_prediction
:
tf
.
Tensor
,
instance_maps
:
tf
.
Tensor
,
thing_class_ids
:
tf
.
Tensor
,
label_divisor
:
int
,
stuff_area_limit
:
int
,
void_label
:
int
)
->
tf
.
Tensor
:
"""Merges semantic and instance maps to obtain panoptic segmentation.
This function merges the semantic segmentation and class-agnostic
instance segmentation to form the panoptic segmentation. In particular,
the class label of each instance mask is inferred from the majority
votes from the corresponding pixels in the semantic segmentation. This
operation is first poposed in the DeeperLab paper and adopted by the
Panoptic-DeepLab.
- DeeperLab: Single-Shot Image Parser, T-J Yang, et al. arXiv:1902.05093.
- Panoptic-DeepLab, B. Cheng, et al. In CVPR, 2020.
Note that this function only supports batch = 1 for simplicity. Additionally,
this function has a slightly different implementation from the provided
TensorFlow implementation `merge_ops` but with a similar performance. This
function is mainly used as a backup solution when you could not successfully
compile the provided TensorFlow implementation. To reproduce our results,
please use the provided TensorFlow implementation (i.e., not use this
function, but the `merge_ops.merge_semantic_and_instance_maps`).
Args:
semantic_prediction: A tf.Tensor of shape [batch, height, width].
instance_maps: A tf.Tensor of shape [batch, height, width].
thing_class_ids: A tf.Tensor of shape [N] containing N thing indices.
label_divisor: An integer specifying the label divisor of the dataset.
stuff_area_limit: An integer specifying the number of pixels that stuff
regions need to have at least. The stuff region will be included in the
panoptic prediction, only if its area is larger than the limit; otherwise,
it will be re-assigned as void_label.
void_label: An integer specifying the void label.
Returns:
panoptic_prediction: A tf.Tensor with shape [batch, height, width].
"""
prediction_shape
=
semantic_prediction
.
get_shape
().
as_list
()
# This implementation only supports batch size of 1. Since model construction
# might lose batch size information (and leave it to None), override it here.
prediction_shape
[
0
]
=
1
semantic_prediction
=
tf
.
ensure_shape
(
semantic_prediction
,
prediction_shape
)
instance_maps
=
tf
.
ensure_shape
(
instance_maps
,
prediction_shape
)
# Default panoptic_prediction to have semantic label = void_label.
panoptic_prediction
=
tf
.
ones_like
(
semantic_prediction
)
*
void_label
*
label_divisor
# Start to paste predicted `thing` regions to panoptic_prediction.
# Infer `thing` segmentation regions from semantic prediction.
semantic_thing_segmentation
=
tf
.
zeros_like
(
semantic_prediction
,
dtype
=
tf
.
bool
)
for
thing_class
in
thing_class_ids
:
semantic_thing_segmentation
=
tf
.
math
.
logical_or
(
semantic_thing_segmentation
,
semantic_prediction
==
thing_class
)
# Keep track of how many instances for each semantic label.
num_instance_per_semantic_label
=
tf
.
TensorArray
(
tf
.
int32
,
size
=
0
,
dynamic_size
=
True
,
clear_after_read
=
False
)
instance_ids
,
_
=
tf
.
unique
(
tf
.
reshape
(
instance_maps
,
[
-
1
]))
for
instance_id
in
instance_ids
:
# Instance ID 0 is reserved for crowd region.
if
instance_id
==
0
:
continue
thing_mask
=
tf
.
math
.
logical_and
(
instance_maps
==
instance_id
,
semantic_thing_segmentation
)
if
tf
.
reduce_sum
(
tf
.
cast
(
thing_mask
,
tf
.
int32
))
==
0
:
continue
semantic_bin_counts
=
tf
.
math
.
bincount
(
tf
.
boolean_mask
(
semantic_prediction
,
thing_mask
))
semantic_majority
=
tf
.
cast
(
tf
.
math
.
argmax
(
semantic_bin_counts
),
tf
.
int32
)
while
num_instance_per_semantic_label
.
size
()
<=
semantic_majority
:
num_instance_per_semantic_label
=
num_instance_per_semantic_label
.
write
(
num_instance_per_semantic_label
.
size
(),
0
)
new_instance_id
=
(
num_instance_per_semantic_label
.
read
(
semantic_majority
)
+
1
)
num_instance_per_semantic_label
=
num_instance_per_semantic_label
.
write
(
semantic_majority
,
new_instance_id
)
panoptic_prediction
=
tf
.
where
(
thing_mask
,
tf
.
ones_like
(
panoptic_prediction
)
*
semantic_majority
*
label_divisor
+
new_instance_id
,
panoptic_prediction
)
# Done with `num_instance_per_semantic_label` tensor array.
num_instance_per_semantic_label
.
close
()
# Start to paste predicted `stuff` regions to panoptic prediction.
instance_stuff_regions
=
instance_maps
==
0
semantic_ids
,
_
=
tf
.
unique
(
tf
.
reshape
(
semantic_prediction
,
[
-
1
]))
for
semantic_id
in
semantic_ids
:
if
tf
.
reduce_sum
(
tf
.
cast
(
thing_class_ids
==
semantic_id
,
tf
.
int32
))
>
0
:
continue
# Check stuff area.
stuff_mask
=
tf
.
math
.
logical_and
(
semantic_prediction
==
semantic_id
,
instance_stuff_regions
)
stuff_area
=
tf
.
reduce_sum
(
tf
.
cast
(
stuff_mask
,
tf
.
int32
))
if
stuff_area
>=
stuff_area_limit
:
panoptic_prediction
=
tf
.
where
(
stuff_mask
,
tf
.
ones_like
(
panoptic_prediction
)
*
semantic_id
*
label_divisor
,
panoptic_prediction
)
return
panoptic_prediction
class
PostProcessor
(
tf
.
keras
.
layers
.
Layer
):
"""This class contains code of a Panoptic-Deeplab post-processor."""
def
__init__
(
self
,
center_score_threshold
:
float
,
thing_class_ids
:
List
[
int
],
label_divisor
:
int
,
stuff_area_limit
:
int
,
ignore_label
:
int
,
nms_kernel
:
int
,
keep_k_centers
:
int
,
**
kwargs
):
"""Initializes a Panoptic-Deeplab post-processor.
Args:
center_threshold: A float setting the threshold for the center heatmap.
thing_class_ids: An integer list shape [N] containing N thing indices.
label_divisor: An integer specifying the label divisor of the dataset.
stuff_area_limit: An integer specifying the number of pixels that stuff
regions need to have at least. The stuff region will be included in the
panoptic prediction, only if its area is larger than the limit;
otherwise, it will be re-assigned as void_label.
void_label: An integer specifying the void label.
nms_kernel_size: An integer specifying the nms kernel size.
keep_k_centers: An integer specifying the number of centers to keep.
Negative values will keep all centers.
"""
super
(
PostProcessor
,
self
).
__init__
(
**
kwargs
)
self
.
_config_dict
=
{
'center_score_threshold'
:
center_score_threshold
,
'thing_class_ids'
:
thing_class_ids
,
'label_divisor'
:
label_divisor
,
'stuff_area_limit'
:
stuff_area_limit
,
'ignore_label'
:
ignore_label
,
'nms_kernel'
:
nms_kernel
,
'keep_k_centers'
:
keep_k_centers
}
self
.
_post_processor
=
functools
.
partial
(
_get_panoptic_predictions
,
center_threshold
=
center_score_threshold
,
thing_class_ids
=
tf
.
convert_to_tensor
(
thing_class_ids
),
label_divisor
=
label_divisor
,
stuff_area_limit
=
stuff_area_limit
,
void_label
=
ignore_label
,
nms_kernel_size
=
nms_kernel
,
keep_k_centers
=
keep_k_centers
)
def
call
(
self
,
result_dict
:
Dict
[
Text
,
tf
.
Tensor
])
->
Dict
[
Text
,
tf
.
Tensor
]:
"""Performs the post-processing given model predicted results.
Args:
result_dict: A dictionary of tf.Tensor containing model results. The dict
has to contain
- segmentation_outputs
- instance_center_prediction
- instance_center_regression
Returns:
The post-processed dict of tf.Tensor, containing the following keys:
- panoptic_outputs
- category_mask
- instance_mask
- instance_centers
- instance_score
"""
processed_dict
=
{}
(
processed_dict
[
'panoptic_outputs'
],
processed_dict
[
'category_mask'
],
processed_dict
[
'instance_mask'
],
processed_dict
[
'instance_centers'
],
processed_dict
[
'instance_scores'
]
)
=
self
.
_post_processor
(
tf
.
nn
.
softmax
(
result_dict
[
'segmentation_outputs'
],
axis
=-
1
),
result_dict
[
'instance_center_prediction'
],
result_dict
[
'instance_center_regression'
])
return
processed_dict
def
get_config
(
self
):
return
self
.
_config_dict
@
classmethod
def
from_config
(
cls
,
config
):
return
cls
(
**
config
)
official/vision/beta/projects/panoptic_maskrcnn/modeling/layers/panoptic_deeplab_merge_test.py
0 → 100644
View file @
92221745
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test for panoptic_deeplab.py.
Note that the tests are branched from
https://raw.githubusercontent.com/google-research/deeplab2/main/model/post_processor/panoptic_deeplab_test.py
"""
import
numpy
as
np
import
tensorflow
as
tf
from
official.vision.beta.projects.panoptic_maskrcnn.modeling.layers
import
panoptic_deeplab_merge
class
PostProcessingTest
(
tf
.
test
.
TestCase
):
def
test_py_func_merge_semantic_and_instance_maps_can_run
(
self
):
batch
=
1
height
=
5
width
=
5
semantic_prediction
=
tf
.
random
.
uniform
((
batch
,
height
,
width
),
minval
=
0
,
maxval
=
20
,
dtype
=
tf
.
int32
)
instance_maps
=
tf
.
random
.
uniform
((
batch
,
height
,
width
),
minval
=
0
,
maxval
=
3
,
dtype
=
tf
.
int32
)
thing_class_ids
=
tf
.
convert_to_tensor
([
1
,
2
,
3
])
label_divisor
=
256
stuff_area_limit
=
3
void_label
=
255
panoptic_prediction
=
panoptic_deeplab_merge
.
_merge_semantic_and_instance_maps
(
semantic_prediction
,
instance_maps
,
thing_class_ids
,
label_divisor
,
stuff_area_limit
,
void_label
)
self
.
assertListEqual
(
semantic_prediction
.
get_shape
().
as_list
(),
panoptic_prediction
.
get_shape
().
as_list
())
def
test_merge_semantic_and_instance_maps_with_a_simple_example
(
self
):
semantic_prediction
=
tf
.
convert_to_tensor
(
[[[
0
,
0
,
0
,
0
],
[
0
,
1
,
1
,
0
],
[
0
,
2
,
2
,
0
],
[
2
,
2
,
3
,
3
]]],
dtype
=
tf
.
int32
)
instance_maps
=
tf
.
convert_to_tensor
(
[[[
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
],
[
0
,
1
,
1
,
0
],
[
2
,
2
,
3
,
3
]]],
dtype
=
tf
.
int32
)
thing_class_ids
=
tf
.
convert_to_tensor
([
2
,
3
])
label_divisor
=
256
stuff_area_limit
=
3
void_label
=
255
# The expected_panoptic_prediction is computed as follows.
# For `thing` segmentation, instance 1, 2, and 3 are kept, but instance 3
# will have a new instance ID 1, since it is the first instance in its
# own semantic label.
# For `stuff` segmentation, class-0 region is kept, while class-1 region
# is re-labeled as `void_label * label_divisor` since its area is smaller
# than stuff_area_limit.
expected_panoptic_prediction
=
tf
.
convert_to_tensor
(
[[[
0
,
0
,
0
,
0
],
[
0
,
void_label
*
label_divisor
,
void_label
*
label_divisor
,
0
],
[
0
,
2
*
label_divisor
+
1
,
2
*
label_divisor
+
1
,
0
],
[
2
*
label_divisor
+
2
,
2
*
label_divisor
+
2
,
3
*
label_divisor
+
1
,
3
*
label_divisor
+
1
]]],
dtype
=
tf
.
int32
)
panoptic_prediction
=
panoptic_deeplab_merge
.
_merge_semantic_and_instance_maps
(
semantic_prediction
,
instance_maps
,
thing_class_ids
,
label_divisor
,
stuff_area_limit
,
void_label
)
np
.
testing
.
assert_equal
(
expected_panoptic_prediction
.
numpy
(),
panoptic_prediction
.
numpy
())
def
test_gets_panoptic_predictions_with_score
(
self
):
batch
=
1
height
=
5
width
=
5
classes
=
3
semantic_logits
=
tf
.
random
.
uniform
((
batch
,
1
,
1
,
classes
))
semantic_logits
=
tf
.
tile
(
semantic_logits
,
(
1
,
height
,
width
,
1
))
center_heatmap
=
tf
.
convert_to_tensor
([
[
1.0
,
0.0
,
0.0
,
0.0
,
0.0
],
[
0.8
,
0.0
,
0.0
,
0.0
,
0.0
],
[
0.0
,
0.0
,
0.0
,
0.0
,
0.0
],
[
0.0
,
0.0
,
0.0
,
0.1
,
0.7
],
[
0.0
,
0.0
,
0.0
,
0.0
,
0.2
],
],
dtype
=
tf
.
float32
)
center_heatmap
=
tf
.
expand_dims
(
center_heatmap
,
0
)
center_heatmap
=
tf
.
expand_dims
(
center_heatmap
,
3
)
center_offsets
=
tf
.
zeros
((
batch
,
height
,
width
,
2
))
center_threshold
=
0.0
thing_class_ids
=
tf
.
range
(
classes
)
# No "stuff" classes.
label_divisor
=
256
stuff_area_limit
=
16
void_label
=
classes
nms_kernel_size
=
3
keep_k_centers
=
2
result
=
panoptic_deeplab_merge
.
_get_panoptic_predictions
(
semantic_logits
,
center_heatmap
,
center_offsets
,
center_threshold
,
thing_class_ids
,
label_divisor
,
stuff_area_limit
,
void_label
,
nms_kernel_size
,
keep_k_centers
)
instance_maps
=
result
[
2
].
numpy
()
instance_scores
=
result
[
4
].
numpy
()
self
.
assertSequenceEqual
(
instance_maps
.
shape
,
(
batch
,
height
,
width
))
expected_instances
=
[[
[
1
,
1
,
1
,
1
,
2
],
[
1
,
1
,
1
,
2
,
2
],
[
1
,
1
,
2
,
2
,
2
],
[
1
,
2
,
2
,
2
,
2
],
[
1
,
2
,
2
,
2
,
2
],
]]
np
.
testing
.
assert_array_equal
(
instance_maps
,
expected_instances
)
self
.
assertSequenceEqual
(
instance_scores
.
shape
,
(
batch
,
height
,
width
))
expected_instance_scores
=
[[
[
1.0
,
1.0
,
1.0
,
1.0
,
0.7
],
[
1.0
,
1.0
,
1.0
,
0.7
,
0.7
],
[
1.0
,
1.0
,
0.7
,
0.7
,
0.7
],
[
1.0
,
0.7
,
0.7
,
0.7
,
0.7
],
[
1.0
,
0.7
,
0.7
,
0.7
,
0.7
],
]]
np
.
testing
.
assert_array_almost_equal
(
instance_scores
,
expected_instance_scores
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
official/vision/beta/projects/panoptic_maskrcnn/modeling/panoptic_deeplab_model.py
0 → 100644
View file @
92221745
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Build Panoptic Deeplab model."""
from
typing
import
Any
,
Mapping
,
Optional
,
Union
import
tensorflow
as
tf
from
official.vision.beta.projects.panoptic_maskrcnn.modeling.layers
import
panoptic_deeplab_merge
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
'Vision'
)
class
PanopticDeeplabModel
(
tf
.
keras
.
Model
):
"""Panoptic Deeplab model."""
def
__init__
(
self
,
backbone
:
tf
.
keras
.
Model
,
semantic_decoder
:
tf
.
keras
.
Model
,
semantic_head
:
tf
.
keras
.
layers
.
Layer
,
instance_head
:
tf
.
keras
.
layers
.
Layer
,
instance_decoder
:
Optional
[
tf
.
keras
.
Model
]
=
None
,
post_processor
:
Optional
[
panoptic_deeplab_merge
.
PostProcessor
]
=
None
,
**
kwargs
):
"""
Args:
backbone: a backbone network.
semantic_decoder: a decoder network. E.g. FPN.
semantic_head: segmentation head.
instance_head: instance center head .
instance_decoder: Optional decoder network for instance predictions.
**kwargs: keyword arguments to be passed.
"""
super
(
PanopticDeeplabModel
,
self
).
__init__
(
**
kwargs
)
self
.
_config_dict
=
{
'backbone'
:
backbone
,
'semantic_decoder'
:
semantic_decoder
,
'instance_decoder'
:
instance_decoder
,
'semantic_head'
:
semantic_head
,
'instance_head'
:
instance_head
,
'post_processor'
:
post_processor
}
self
.
backbone
=
backbone
self
.
semantic_decoder
=
semantic_decoder
self
.
instance_decoder
=
instance_decoder
self
.
semantic_head
=
semantic_head
self
.
instance_head
=
instance_head
self
.
post_processor
=
post_processor
def
call
(
self
,
inputs
:
tf
.
Tensor
,
training
:
bool
=
None
)
->
tf
.
Tensor
:
if
training
is
None
:
training
=
tf
.
keras
.
backend
.
learning_phase
()
backbone_features
=
self
.
backbone
(
inputs
,
training
=
training
)
semantic_features
=
self
.
semantic_decoder
(
backbone_features
,
training
=
training
)
if
self
.
instance_decoder
is
None
:
instance_features
=
semantic_features
else
:
instance_features
=
self
.
instance_decoder
(
backbone_features
,
training
=
training
)
segmentation_outputs
=
self
.
semantic_head
(
(
backbone_features
,
semantic_features
),
training
=
training
)
instance_outputs
=
self
.
instance_head
(
(
backbone_features
,
instance_features
),
training
=
training
)
outputs
=
{
'segmentation_outputs'
:
segmentation_outputs
,
'instance_center_prediction'
:
instance_outputs
[
'instance_center_prediction'
],
'instance_center_regression'
:
instance_outputs
[
'instance_center_regression'
],
}
if
training
:
return
outputs
outputs
=
self
.
post_processor
(
outputs
)
return
outputs
@
property
def
checkpoint_items
(
self
)
->
Mapping
[
str
,
Union
[
tf
.
keras
.
Model
,
tf
.
keras
.
layers
.
Layer
]]:
"""Returns a dictionary of items to be additionally checkpointed."""
items
=
dict
(
backbone
=
self
.
backbone
,
semantic_decoder
=
self
.
semantic_decoder
,
semantic_head
=
self
.
semantic_head
,
instance_head
=
self
.
instance_head
)
if
self
.
instance_decoder
is
not
None
:
items
.
update
(
instance_decoder
=
self
.
instance_decoder
)
return
items
def
get_config
(
self
)
->
Mapping
[
str
,
Any
]:
return
self
.
_config_dict
@
classmethod
def
from_config
(
cls
,
config
,
custom_objects
=
None
):
return
cls
(
**
config
)
official/vision/beta/projects/panoptic_maskrcnn/modeling/panoptic_deeplab_model_test.py
0 → 100644
View file @
92221745
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Tests for Panoptic Deeplab network."""
from
absl.testing
import
parameterized
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.python.distribute
import
combinations
from
official.vision.beta.modeling
import
backbones
from
official.vision.beta.modeling.decoders
import
aspp
from
official.vision.beta.projects.panoptic_maskrcnn.modeling.heads
import
panoptic_deeplab_heads
from
official.vision.beta.projects.panoptic_maskrcnn.modeling
import
panoptic_deeplab_model
from
official.vision.beta.projects.panoptic_maskrcnn.modeling.layers
import
panoptic_deeplab_merge
class
PanopticDeeplabNetworkTest
(
parameterized
.
TestCase
,
tf
.
test
.
TestCase
):
@
combinations
.
generate
(
combinations
.
combine
(
level
=
[
2
,
3
,
4
],
input_size
=
[
256
,
512
],
low_level
=
[(
4
,
3
),
(
3
,
2
)],
shared_decoder
=
[
True
,
False
],
training
=
[
True
,
False
]))
def
test_panoptic_deeplab_network_creation
(
self
,
input_size
,
level
,
low_level
,
shared_decoder
,
training
):
"""Test for creation of a panoptic deep lab network."""
batch_size
=
2
if
training
else
1
num_classes
=
10
inputs
=
np
.
random
.
rand
(
batch_size
,
input_size
,
input_size
,
3
)
tf
.
keras
.
backend
.
set_image_data_format
(
'channels_last'
)
backbone
=
backbones
.
ResNet
(
model_id
=
50
)
semantic_decoder
=
aspp
.
ASPP
(
level
=
level
,
dilation_rates
=
[
6
,
12
,
18
])
if
shared_decoder
:
instance_decoder
=
semantic_decoder
else
:
instance_decoder
=
aspp
.
ASPP
(
level
=
level
,
dilation_rates
=
[
6
,
12
,
18
])
semantic_head
=
panoptic_deeplab_heads
.
SemanticHead
(
num_classes
,
level
=
level
,
low_level
=
low_level
,
low_level_num_filters
=
(
64
,
32
))
instance_head
=
panoptic_deeplab_heads
.
InstanceHead
(
level
=
level
,
low_level
=
low_level
,
low_level_num_filters
=
(
64
,
32
))
post_processor
=
panoptic_deeplab_merge
.
PostProcessor
(
center_score_threshold
=
0.1
,
thing_class_ids
=
[
1
,
2
,
3
,
4
],
label_divisor
=
[
256
],
stuff_area_limit
=
4096
,
ignore_label
=
0
,
nms_kernel
=
41
,
keep_k_centers
=
41
)
model
=
panoptic_deeplab_model
.
PanopticDeeplabModel
(
backbone
=
backbone
,
semantic_decoder
=
semantic_decoder
,
instance_decoder
=
instance_decoder
,
semantic_head
=
semantic_head
,
instance_head
=
instance_head
,
post_processor
=
post_processor
)
outputs
=
model
(
inputs
,
training
=
training
)
if
training
:
self
.
assertIn
(
'segmentation_outputs'
,
outputs
)
self
.
assertIn
(
'instance_center_prediction'
,
outputs
)
self
.
assertIn
(
'instance_center_regression'
,
outputs
)
self
.
assertAllEqual
(
[
2
,
input_size
//
(
2
**
low_level
[
-
1
]),
input_size
//
(
2
**
low_level
[
-
1
]),
num_classes
],
outputs
[
'segmentation_outputs'
].
numpy
().
shape
)
self
.
assertAllEqual
(
[
2
,
input_size
//
(
2
**
low_level
[
-
1
]),
input_size
//
(
2
**
low_level
[
-
1
]),
1
],
outputs
[
'instance_center_prediction'
].
numpy
().
shape
)
self
.
assertAllEqual
(
[
2
,
input_size
//
(
2
**
low_level
[
-
1
]),
input_size
//
(
2
**
low_level
[
-
1
]),
2
],
outputs
[
'instance_center_regression'
].
numpy
().
shape
)
else
:
self
.
assertIn
(
'panoptic_outputs'
,
outputs
)
self
.
assertIn
(
'category_mask'
,
outputs
)
self
.
assertIn
(
'instance_mask'
,
outputs
)
self
.
assertIn
(
'instance_centers'
,
outputs
)
self
.
assertIn
(
'instance_scores'
,
outputs
)
@
combinations
.
generate
(
combinations
.
combine
(
level
=
[
2
,
3
,
4
],
low_level
=
[(
4
,
3
),
(
3
,
2
)],
shared_decoder
=
[
True
,
False
]))
def
test_serialize_deserialize
(
self
,
level
,
low_level
,
shared_decoder
):
"""Validate the network can be serialized and deserialized."""
num_classes
=
10
backbone
=
backbones
.
ResNet
(
model_id
=
50
)
semantic_decoder
=
aspp
.
ASPP
(
level
=
level
,
dilation_rates
=
[
6
,
12
,
18
])
if
shared_decoder
:
instance_decoder
=
semantic_decoder
else
:
instance_decoder
=
aspp
.
ASPP
(
level
=
level
,
dilation_rates
=
[
6
,
12
,
18
])
semantic_head
=
panoptic_deeplab_heads
.
SemanticHead
(
num_classes
,
level
=
level
,
low_level
=
low_level
,
low_level_num_filters
=
(
64
,
32
))
instance_head
=
panoptic_deeplab_heads
.
InstanceHead
(
level
=
level
,
low_level
=
low_level
,
low_level_num_filters
=
(
64
,
32
))
post_processor
=
panoptic_deeplab_merge
.
PostProcessor
(
center_score_threshold
=
0.1
,
thing_class_ids
=
[
1
,
2
,
3
,
4
],
label_divisor
=
[
256
],
stuff_area_limit
=
4096
,
ignore_label
=
0
,
nms_kernel
=
41
,
keep_k_centers
=
41
)
model
=
panoptic_deeplab_model
.
PanopticDeeplabModel
(
backbone
=
backbone
,
semantic_decoder
=
semantic_decoder
,
instance_decoder
=
instance_decoder
,
semantic_head
=
semantic_head
,
instance_head
=
instance_head
,
post_processor
=
post_processor
)
config
=
model
.
get_config
()
new_model
=
panoptic_deeplab_model
.
PanopticDeeplabModel
.
from_config
(
config
)
# Validate that the config can be forced to JSON.
_
=
new_model
.
to_json
()
# If the serialization was successful, the new config should match the old.
self
.
assertAllEqual
(
model
.
get_config
(),
new_model
.
get_config
())
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment