Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
8ff61153
Commit
8ff61153
authored
Sep 19, 2018
by
Naurril
Committed by
Taylor Robie
Sep 18, 2018
Browse files
remove final_size parameter of resnet (#5326)
parent
630c4ca8
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
2 additions
and
8 deletions
+2
-8
official/resnet/cifar10_main.py
official/resnet/cifar10_main.py
+0
-1
official/resnet/imagenet_main.py
official/resnet/imagenet_main.py
+0
-3
official/resnet/resnet_model.py
official/resnet/resnet_model.py
+2
-4
No files found.
official/resnet/cifar10_main.py
View file @
8ff61153
...
@@ -184,7 +184,6 @@ class Cifar10Model(resnet_model.Model):
...
@@ -184,7 +184,6 @@ class Cifar10Model(resnet_model.Model):
first_pool_stride
=
None
,
first_pool_stride
=
None
,
block_sizes
=
[
num_blocks
]
*
3
,
block_sizes
=
[
num_blocks
]
*
3
,
block_strides
=
[
1
,
2
,
2
],
block_strides
=
[
1
,
2
,
2
],
final_size
=
64
,
resnet_version
=
resnet_version
,
resnet_version
=
resnet_version
,
data_format
=
data_format
,
data_format
=
data_format
,
dtype
=
dtype
dtype
=
dtype
...
...
official/resnet/imagenet_main.py
View file @
8ff61153
...
@@ -232,10 +232,8 @@ class ImagenetModel(resnet_model.Model):
...
@@ -232,10 +232,8 @@ class ImagenetModel(resnet_model.Model):
# For bigger models, we want to use "bottleneck" layers
# For bigger models, we want to use "bottleneck" layers
if
resnet_size
<
50
:
if
resnet_size
<
50
:
bottleneck
=
False
bottleneck
=
False
final_size
=
512
else
:
else
:
bottleneck
=
True
bottleneck
=
True
final_size
=
2048
super
(
ImagenetModel
,
self
).
__init__
(
super
(
ImagenetModel
,
self
).
__init__
(
resnet_size
=
resnet_size
,
resnet_size
=
resnet_size
,
...
@@ -248,7 +246,6 @@ class ImagenetModel(resnet_model.Model):
...
@@ -248,7 +246,6 @@ class ImagenetModel(resnet_model.Model):
first_pool_stride
=
2
,
first_pool_stride
=
2
,
block_sizes
=
_get_block_sizes
(
resnet_size
),
block_sizes
=
_get_block_sizes
(
resnet_size
),
block_strides
=
[
1
,
2
,
2
,
2
],
block_strides
=
[
1
,
2
,
2
,
2
],
final_size
=
final_size
,
resnet_version
=
resnet_version
,
resnet_version
=
resnet_version
,
data_format
=
data_format
,
data_format
=
data_format
,
dtype
=
dtype
dtype
=
dtype
...
...
official/resnet/resnet_model.py
View file @
8ff61153
...
@@ -354,7 +354,7 @@ class Model(object):
...
@@ -354,7 +354,7 @@ class Model(object):
kernel_size
,
kernel_size
,
conv_stride
,
first_pool_size
,
first_pool_stride
,
conv_stride
,
first_pool_size
,
first_pool_stride
,
block_sizes
,
block_strides
,
block_sizes
,
block_strides
,
final_size
,
resnet_version
=
DEFAULT_VERSION
,
data_format
=
None
,
resnet_version
=
DEFAULT_VERSION
,
data_format
=
None
,
dtype
=
DEFAULT_DTYPE
):
dtype
=
DEFAULT_DTYPE
):
"""Creates a model for classifying an image.
"""Creates a model for classifying an image.
...
@@ -376,7 +376,6 @@ class Model(object):
...
@@ -376,7 +376,6 @@ class Model(object):
i-th set.
i-th set.
block_strides: List of integers representing the desired stride size for
block_strides: List of integers representing the desired stride size for
each of the sets of block layers. Should be same length as block_sizes.
each of the sets of block layers. Should be same length as block_sizes.
final_size: The expected size of the model after the second pooling.
resnet_version: Integer representing which version of the ResNet network
resnet_version: Integer representing which version of the ResNet network
to use. See README for details. Valid values: [1, 2]
to use. See README for details. Valid values: [1, 2]
data_format: Input format ('channels_last', 'channels_first', or None).
data_format: Input format ('channels_last', 'channels_first', or None).
...
@@ -422,7 +421,6 @@ class Model(object):
...
@@ -422,7 +421,6 @@ class Model(object):
self
.
first_pool_stride
=
first_pool_stride
self
.
first_pool_stride
=
first_pool_stride
self
.
block_sizes
=
block_sizes
self
.
block_sizes
=
block_sizes
self
.
block_strides
=
block_strides
self
.
block_strides
=
block_strides
self
.
final_size
=
final_size
self
.
dtype
=
dtype
self
.
dtype
=
dtype
self
.
pre_activation
=
resnet_version
==
2
self
.
pre_activation
=
resnet_version
==
2
...
@@ -542,7 +540,7 @@ class Model(object):
...
@@ -542,7 +540,7 @@ class Model(object):
inputs
=
tf
.
reduce_mean
(
inputs
,
axes
,
keepdims
=
True
)
inputs
=
tf
.
reduce_mean
(
inputs
,
axes
,
keepdims
=
True
)
inputs
=
tf
.
identity
(
inputs
,
'final_reduce_mean'
)
inputs
=
tf
.
identity
(
inputs
,
'final_reduce_mean'
)
inputs
=
tf
.
reshap
e
(
inputs
,
[
-
1
,
self
.
final_size
]
)
inputs
=
tf
.
squeez
e
(
inputs
,
axes
)
inputs
=
tf
.
layers
.
dense
(
inputs
=
inputs
,
units
=
self
.
num_classes
)
inputs
=
tf
.
layers
.
dense
(
inputs
=
inputs
,
units
=
self
.
num_classes
)
inputs
=
tf
.
identity
(
inputs
,
'final_dense'
)
inputs
=
tf
.
identity
(
inputs
,
'final_dense'
)
return
inputs
return
inputs
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment